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ABSTRACT 

The paper presents a dynamic model that works with variable internal 

damping, applicable directly to rigid memory mechanisms. If the problem 

of elasticity is generally solved, the problem of system damping is not 

clear and well-established. It is usually considered a constant "c" value 

for the internal damping of the system and sometimes the same value c 

and for the damping of the elastic spring supporting the valve. However, 

the approximation is much forced, as the elastic spring damping is 

variable, and for the conventional cylindrical spring with constant 

elasticity parameter (k) with linear displacement with force, the damping 

is small and can be considered zero. It should be specified that damping 

does not necessarily mean stopping (or opposition) movement, but 

damping means energy consumption to brake the motion (rubber elastic 

elements have considerable damping, as are hydraulic dampers). Metal 

helical springs generally have a low (negligible) damping. The braking 

effect of these springs increases with the elastic constant (the k-stiffness 

of the spring) and the force of the spring (P0 or F0) of the spring (in other 

words with the arc static arrow, x0=P0/k). Energy is constantly changing 

but does not dissipate (for this reason, the yield of these springs is 

generally higher). The paper presents a dynamic model with a degree of 

freedom, considering internal damping of the system (c), damping for 

which it is considered a special function..  
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More precisely, the cushioning coefficient of the system (c) is defined as a variable 

parameter depending on the reduced mass of the mechanism (m* or J reduced) and 

the time, ie, c depends on the derivative of m reduced in time. The equation of the 

differential movement of the mechanism is written as the movement of the valve as a 

dynamic response. 

Keywords: Distribution mechanism; Rigid memory mechanisms; Variable internal 

damping; Dynamic model; Angular speed variation; Dynamic coefficient 

1. INTRODUCTION 

 The development and diversification of road vehicles and general vehicles, 

especially of cars, together with thermal engines, especially internal combustion 

engines (being more compact, robust, more independent, more reliable, stronger, 

more dynamic etc.)., has also forced the development of devices, mechanisms, and 

component assemblies at an alert pace. The most studied are power and transmission 

trains. 

 The four-stroke internal combustion engine (four-stroke, Otto or Diesel) 

comprises in most cases (with the exception of rotary motors) and one or more 

camshafts, valves, valves, and so on. 

 The classical distribution mechanisms are robust, reliable, dynamic, fast-

response, and although they functioned with very low mechanical efficiency, taking 

much of the engine power and effectively causing additional pollution and increased 

fuel consumption, they could not be abandoned until the present. Another problem 

was the low speed from which these mechanisms begin to produce vibrations and very 

high noises. 

 Regarding the situation realistically, the mechanisms of cam casting and 

sticking are those that could have produced more industrial, economic, social 

revolutions in the development of mankind. They have contributed substantially to the 

development of internal combustion engines and their spreading to the detriment of 

external combustion (Steam or Stirling) combustion engines. 

 The problem of very low yields, high emissions and very high power and fuel 

consumption has been greatly improved and regulated over the past 20-30 years by 

developing and introducing modern distribution mechanisms that, besides higher 
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yields immediately deliver a high fuel economy also performs optimal noise-free, 

vibration-free, no-smoky operation, as the maximum possible engine speed has 

increased from 6000 to 30000 [rpm]. 

 The paper tries to provide additional support to the development of distribution 

mechanisms so that their performance and the engines they will be able to further 

enhance. 

 Particular performance is the further increase in the mechanical efficiency of 

distribution systems, up to unprecedented quotas so far, which will bring a major fuel 

economy. 

 The current oil and energy reserves of mankind are limited. Until the 

implementation of new energy sources (to take real control over fossil fuels), a real 

alternative source of energy and fuel is even "the reduction in fuel consumption of a 

motor vehicle", whether we burn oil, gas and petroleum derivatives, whether we will 

implement biofuels first, and later hydrogen (extracted from water). 

 The drop in fuel consumption for a given vehicle type over a hundred kilometers 

traveled has been consistently since 1980 and has continued to continue in the future. 

 Even if hybrids and electric motor cars are to be multiplied, let us not forget that 

they have to be charged with electricity, which is generally obtained by burning fossil 

fuels, especially oil and gas, in a current planetary proportion of about 60%. Can burn 

oil in large heat plants to warm up, have domestic hot water and electricity to consume, 

and some of that energy is extra and we add it to electric cars (electric vehicles), but 

the global energy problem is not resolved, the crisis even deepens. This was the case 

when was electrified the railroad for trains, when it were generalized trams, 

trolleybuses and subways, consuming more electric power produced mainly from oil; 

oil consumption has grown a lot, its price has had a huge leap, and now one looks at 

how the reserves disappear quickly. 

 Generally, generalizing electric cars (though it is not really ready for this), one 

will give a new blow to oil and gas reserves. 

 Fortunately, biofuels, biomass and nuclear power have developed very much 

lately (currently based on the nuclear fission reaction). These together with the 

hydroelectric power plants have managed to produce about 40% of the total energy 
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consumed globally. Only about 2-3% of global energy resources are produced by 

various other alternative methods (despite the efforts made so far). 

 This should not disarm us, and abandon the implementation of solar, wind, etc. 

 However, as a first necessity to further reduce the share of global energy from 

oil and gas, the first vigorous measures that will need to be pursued will be to increase 

biomass and biofuels production along with the widening of the number of nuclear 

power plants (despite some undesirable events, which only show that nuclear fission 

power plants must be built with a high degree of safety, and in no way eliminated from 

now on, and they are still the one that has been so far "a bad evil "). 

 Alternative sources will take them on an unprecedented scale, but it expects 

the energy they provide to be more consistent in global percentages so that can rely 

on them in a real way (otherwise, one risks that all these alternative energies remain 

a sort of "fairy tale"). 

 Hydrogen fuel energy "when it starts when it stops" so there is no real time now 

to save energy through them, so they can no longer be priority, but the trucks and 

buses could even be implemented now that the storage problems have been partially 

solved. The bigger problem with hydrogen is no longer the safe storage, but the high 

amount of energy needed to extract it, and especially for its bottling.  

 The huge amount of electricity consumed for bottling hydrogen will have to be 

obtained entirely through alternative energy sources, otherwise hydrogen programs 

will not be profitable for humanity at least for the time being. The authors thinking the 

immediate use of hydrogen extracted from the water with alternative energies would 

be more appropriate for seagoing vessels. 

 Maybe just to say that due to his energy crisis (and not just energy, from 1970 

until today), the production of cars has increased at an alert pace (but naturally) 

instead of falling, and they have and were marketed and used. The world's energy 

crisis (in the 1970s) began to rise from around 200 million vehicles worldwide, to about 

350 million in 1980 (when the world's energy and global fuel crisis was declared), 

about 500 million vehicles worldwide, and in 1997 the number of world-registered 

vehicles exceeded 600 million.  

 In 2010, more than 800 million vehicles circulate across the planet 

(ANTONESCU, 2000; ANTONESCU; PETRESCU, 1985; ANTONESCU; PETRESCU, 
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1989; ANTONESCU et al., 1985a; ANTONESCU et al.,1985b; ANTONESCU et al., 

1986; ANTONESCU et al., 1987; ANTONESCU et al., 1988; ANTONESCU et al., 1994; 

ANTONESCU et al., 1997; ANTONESCU et al., 2000a; ANTONESCU et al.2000b 

ANTONESCU et al., 2001; AVERSA et al., 2017a; AVERSA et al., 2017b; AVERSA et 

al., 2017c; AVERSA et al., 2017d; AVERSA et al., 2017e; MIRSAYAR et al., 2017; 

PETRESCU et al., 2017a; PETRESCU et al., 2017b; PETRESCU et al., 2017c; 

PETRESCU et al., 2017d; PETRESCU et al., 2017e; PETRESCU et al., 2017f; 

PETRESCU et al., 2017g; PETRESCU et al., 2017h; PETRESCU et al., 2017i, 

PETRESCU et al.,2015; PETRESCU; PETRESCU, 2016; PETRESCU; PETRESCU, 

2014; PETRESCU; PETRESCU, 2013a; PETRESCU; PETRESCU, 2013b; 

PETRESCU; PETRESCU, 2013c; PETRESCU; PETRESCU, 2013d; PETRESCU; 

PETRESCU, 2011; PETRESCU; PETRESCU, 2005a; PETRESCU; PETRESCU, 

2005b; PETRESCU, 2015a; PETRESCU, 2015b, PETRESCU, 2012a; PETRESCU, 

2012b; HAIN, 1971; GIORDANA et al., 1979; ANGELES; LOPEZ-CAJUN, 1988; 

TARAZA et al., 2001; WIEDERRICH; ROTH, 1974; FAWCETT; FAWCETT, 1974; 

JONES; REEVE, 1974; TESAR; MATTHEW, 1974; SAVA, 1970; KOSTER, 1974). 

2. THE STATE OF THE ART 

 The Peugeot Citroën Group in 2006 built a 4-valve hybrid engine with 4 

cylinders the first cam opens the normal valve and the second with the phase shift. 

Almost all current models have stabilized at four valves per cylinder to achieve a 

variable distribution. In 1971, K. Hain proposes a method of optimizing the cam 

mechanism to obtain an optimal (maximum) transmission angle and a minimum 

acceleration at the output. In 1979, F. Giordano investigates the influence of 

measurement errors in the kinematic analysis of the camel. 

 In 1985, P. Antonescu presented an analytical method for the synthesis of the 

cam mechanism and the flat barbed wire, and the rocker mechanism. In 1988, J. 

Angeles and C. Lopez-Cajun presented the optimal synthesis of the cam mechanism 

and oscillating plate stick.  

 In 2001 Dinu Taraza analyzes the influence of the cam profile, the variation of 

the angular speed of the distribution shaft and the power, load, consumption and 

emission parameters of the internal combustion engine. In 2005, Petrescu and 
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Petrescu, present a method of synthesis of the rotating camshaft profile with rotary or 

rotatable tappet, flat or roller, in order to obtain high yields at the exit. 

 In the paper (WIEDERRICH; ROTH, 1974), there is presented a basic, single-

degree, dual-spring model with double internal damping for simulating the motion of 

the cam and punch mechanism. In the paper (FAWCETT; FAWCETT, 1974) is 

presented the basic dynamic model of a cam mechanism, stick and valve, with two 

degrees of freedom, without internal damping.  

 A dynamic model with both damping in the system, external (valve spring) and 

internal one is the one presented in the paper (JONES; REEVE, 1974). A dynamic 

model with a degree of freedom, generalized, is presented in the paper (TESAR; 

MATTHEW, 1974), in which there is also presented a two-degree model with double 

damping.  

 In the paper (SAVA, 1970) is proposed a dynamic model with 4 degrees of 

freedom, obtained as follows: the model has two moving masses these by vertical 

vibration each impose a degree of freedom one mass is thought to vibrate and 

transverse, generating yet another degree of freedom and the last degree of freedom 

is generated by the torsion of the camshaft.  

 Also in the paper (SAVA, 1970) is presented a simplified dynamic model, 

amortized. In (SAVA, 1970) there is also showed a dynamic model, which takes into 

account the torsional vibrations of the camshaft. In the paper (KOSTER, 1974) a four-

degree dynamic model with a single oscillating motion mass is presented, representing 

one of four degrees of freedom.  

 The other three freedoms result from a torsional deformation of the camshaft, 

a vertical bending (z), camshaft and a bending strain of the same shaft, horizontally 

(y), all three deformations, in a plane perpendicular to the axis of rotation. The sum of 

the momentary efficiency and the momentary losing coefficient is 1. The work is 

especially interesting in how it manages to transform the four degrees of freedom into 

one, ultimately using a single equation of motion along the main axis.  

 The dynamic model presented can be used wholly or only partially, so that on 

another classical or new dynamic model, the idea of using deformations on different 

axes with their cumulative effect on a single axis is inserted. In works (ANTONESCU 

et al., 1987; PETRESCU; PETRESCU, 2005a) there is presented a dynamic model 
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with a degree of freedom, considering the internal damping of the system (c), the 

damping for which is considered a special function. More precisely, the damping 

coefficient of the system (c) is defined as a variable parameter depending on the 

reduced mass of the mechanism (m* or Jreduced) and time, ie, c, depends on the time 

derivative of mreduced. The equation of differential movement of the mechanism is 

written as the movement of the valve as a dynamic response. 

3. DYNAMIC MODELS WITH VARIABLE INTERNAL DAMPING 

 Starting from the kinematic scheme of the classical distribution mechanism (see 

Figure 1), the dynamic, mono-dynamic (single degree), translatable, variable damping 

model (see Figure 2) is constructed, the motion equation of which is: 

0)( FxcxkxyKxM                                        (1) 

 Equation (1) is nothing else than the equation of Newton, in which the sum of 

forces on an element in a certain direction (x) is equal to zero. 

 The notations in formula (1) are as follows: 

M- mass of the reduced valve mechanism; 

K- reduced elastic constants of the kinematic chain (rigidity of the kinematic chain); 

k- elastic spring valve constant; 

c - the damping coefficient of the entire kinematic chain (internal damping of the 

system); 

F, Ft - the elastic spring force of the valve spring; 

x - actual valve displacement; 

(the cam profile) reduced to the axis of the valve. 
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Figure 1: The kinematic scheme of the classic distribution mechanism 
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Figure 2: Mono - dynamic  model, with internal depreciation of the variable system 

 The Newton equation (1) is ordered as follows: 

).()( 0 xkFxyKxcxM                                      (2) 

 At the same time the differential equation of the mechanism is also written as 

Lagrange, (3), (Lagrange equation): 

rm FFx
dt

dM
xM  

2

1
                            (3) 

 Equation (3), which is nothing other than the Lagrange differential equation, 

allows for the low strength of the valve (4) to be obtained by the polynomial coefficients 

with those of the Newtonian polynomial (2), the reduced drive force at the valve (5), 
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as well as the expression of c, ie the expression of the internal damping coefficient, of 

the system (6). 

)( 000 xxkxkxkxkFFr                           (4) 

)()( xsKxyKFm                                       (5) 

dt

dM
c 

2

1
                      (6) 

 Thus a new formula (6) is obtained, in which the internal damping coefficient (of 

a dynamic system) is equal to half the derivative with the time of the reduced mass of 

the dynamic system. 

 The Newton motion equation (1, or 2), by replacing it with c takes the form (7): 

0)(
2

1
FyKxkKx

dt

dM
xM                               (7) 

 In the case of the classical distribution mechanism (in Figure 1), the reduced 

mass, M, is calculated by the formula (8): 

                                      24
4

21
1

22
325 )()()()(

x
J

x
J

x

y
mmmM


 

                      (8) 

formula in which or used the following notations: 

m2 = stick weight; 

m3 = the mass of the pushing rod; 

m5 = mass of the valve; 

J1 = moment of mechanical inertia of the cam; 

J4 = moment of mechanical inertia of the culbutor; 

2y= velocity of stroke imposed by cam law; 

x= valve speed. 

 If i = i25, the valve-to-valve ratio (made by the crank lever), the theoretical 

velocity of the valve (imposed by the motion law given by the cam profile) is calculated 

by the formula (9): 
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i

y
yy 2

5


                                       (9) 

where: 

         
DC

CC
i

0

0                                     (10)   

is the ratio of the crank arms. 

 The following relationships are written (11-16): 

                                                             '1 xx                                               (11)

             ''2
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                '... 1
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DCxDC

y

x






                         (16) 

where y 'is the reduced velocity imposed by the camshaft (by the law of camshaft 

movement), reduced to the valve axis. 

 With the previous relationships (10), (13), (14), (16), the relationship (8) 

becomes (17-19): 

          2

0
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2
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2
325 )
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'
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DC
J

x
J

x
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mmmM                     (17) 

or: 
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1
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y

DC

J
mmimM                   (18) 

or: 
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 We make the derivative dM/d� and result the following relationships: 
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 Write the relationship (6) as: 

        

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which with (22) becomes: 

      }
'

''
)

'

''

'

''
()

'

'
(]

)(
)({[

31
2

2
0

4
32

2

x

x
J

x

x

y

y

x

y

DC

J
mmic                   (24) 

or    
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 Where was noted:    
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mmim                          (26) 

4. DETERMINATION OF MOTION EQUATIONS 

 With relations (19), (12), (25) and (11), equation (2) is written first in the form 

(27), which develops in forms (28), (29) and (30): 

                0
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      meaning: 

0
22222

5
2 )(

'

'
''.*'')

'

'
(*)

'

'
(''*'' FyKxkK

x

y
ymx

x

y
m

x

y
xmxm      (29) 

And final form: 
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y
ymxkKxm                          (30) 

which can also be written in another form: 

   05
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'

'
''*''( FyKxkK

x

y
ymxm                (31) 

 Equation (31) can be approximated to form (32) if we consider the theoretical 

input velocity y imposed by the camshaft profile (reduced to the valve axis) 

approximately equal to the velocity of the valve, x. 

 

   05
2 )()''*''( FyKxkKymxm                (32) 

 

 If the laws of entry with s, s' (low speed), s' '(low acceleration), equation (32) 

takes the form (33) and the more complete equation (31) takes the complex form 

(34): 

        05
2 )()''*''( FsKxkKsmxm                (33) 

     05
2 )()

'

'
''*''( FsKxkK

x

s
smxm                (34) 

 

5. DYNAMIC MODEL WITH FOUR DEGREES OF FREEDOM WITH INTERNAL 

SYSTEM DAMPING - VARIABLE - 

 In the paper (ANTONESCU et al., 1985 a) there is presented a dynamic 

damping model variable as in the previous paragraph, but with four degrees of mobility. 

 The hypothesis of the existence of four masses in translational motion is made 

at the same time (see Figure 3).  
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 Figure 3a shows the kinematic diagram of the classic distribution mechanism, 

and in FIG. 3b is shown the corresponding dynamic pattern, with four moving masses, 

thus with four degrees of freedom.  

 The way in which the four dynamic masses and the corresponding elastic 

constants, as well as the corresponding damping, are deduced will be presented in 

the following paragraph. 

 The dynamic model with four degrees of freedom (Figure 3) is considered, 

where the four reduced masses of the driven element (valve) are calculated with the 

formulas (35). 

 The mass m1* is calculated as the mass m1 (mass of the camshaft) that reduces 

to the valve axis, that is, this mass m1, multiplies by the theoretical input speed cy1 , 

square, and is divided by the square of the valve speed 2x , the ratio between the cam 

entry speed cy1 and valve velocity x, and rises to square, and this square ratio 

multiplies by the mass m1. 



O1 m1 ,k1 

m2 ,k2 

m3 ,k3 

A

B

C
DO4 

m4 ,k4 

m5 ,k5 

m6 ,k6 

m1 *

m4 *

m2 *

m3 *

Fe 

F0 

k1 *

k2 *

k3 *

k4 * c4  

c2 

c3 

c1 

a) b)

y1 

y2 

y3 

y4 = x

 
Figure 3: Dynamic model with four degrees of freedom with internal system damping 

- variable - 

 As the input speed cy1 must also be reduced to the axis of the valve, instead of 

it write down the reduced input velocity to the valve axis 1y, multiplied by the coulter 

transmission ratio, i, that is, we have the relation 11 .yiy c   and the square velocity 2
1cy , 
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will be replaced with 2
1

2 .yi  , and will be written down i2 multiplied to the mass m1 with 

m1'. For mass m2*, consider the weight of the tappet, m2, plus one third of the weight 

of the pushing rod, m3, and the corresponding speed 2y  is practically the dynamic 

velocity of the tappet reduced to the axis of the valve. 

 The mass m3* corresponds to the pusher rod and consists of two remaining 

thirds of the pushing rod weight, m3, plus half of the mass of the stem, m4; velocity 3y

is the actual average speed with which the pushing rod moves on the vertical axis 

reduced to the valve axis, or the speed of the stopper at the point C reduced to the 

valve axis. 

 The mass m4* is obtained from all the summaries on the side of the valve, ie 

half the mass of the valve, plus the mass m5 (which in turn represents the sum of the 

valve mass and the mass of the valve pan) plus a third of the mass of the valve spring. 

The speed of the valve (obviously at its axis) was marked with x. 


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             (35) 

where i = O4C / O4D (see Figure 3) represents the transmission ratio of the culbutor; 

m1, m2, m3, m4, m5, m6 are in order: the mass of the cam, the stick, the pusher rod, the 

stem, the valve (with the roller) and the valve spring respectively. The following 

equivalent elastic constants (see Figure 3) are reduced to the valve (36): 

 6
*
44

*
3

2
3

*
2

2

21

21*
1 ;;; KKKKiKKi

KK

KK
K 




               (36) 

where k1, k2, k3, k4, k6 are the stiffnesses (elastic constants) of the corresponding 

elements. The elastic valve constant is not in question. It is noted that F0 is the external 

force, known as the spring force of the valve spring, and Fe is the balancing force at 

the valve, basically the driving force. The influence of moments of mechanical inertia 

(mass), weight forces and friction forces will be neglected. Following the dynamic 

equilibrium for each reduced mass in part are written four equations of the form (37-

40): 

0)( 111
*
121

*
1  ycymFyyK e                          (37) 
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0)()( 222
*
221

*
132

*
2  ycymyyKyyK                         (38) 

  0)()( 333
*
332

*
23

*
3  ycymyyKxyK                            (39) 

           0)( 4
*
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*
3

*
4  xcxmFxyKxK                          (40) 

 The linear displacements y1 , y2 , y3 , y4 =x correspond to the reduced masses 

m1*, m2*, m3*, m4*. 

 Assuming that the movement y1 is known from the motion law y1 = y1 (�) 

imposed on the camshaft at the cam design, the displacements y2, y3, x and the 

balance force Fe, ie the motor force Fm, remain unknown. 

 In this case it is observed that equations (38), (39) and (40) form a system of 

three equations with three unknowns y2, y3, x. After calculating the three 

displacements from (37), the equilibration force Fe is obtained. 

 Basically, the system is not linear because, in addition to the unknowns given 

by the three displacements, we have as extra unknown the speeds and accelerations 

derived from unknown movements, ie practically unknown will be ten and only four of 

the system's equations. 

                                             



d

dM

dt

dM
c 

22

1 1                                    (41) 

 For the actual solution of the equation system (37) - (40), the damping 

coefficients c1, c2, c3, c4 of formula (41), already known from the system with a degree 

of freedom and the mass system (35), as follows (42-45): 
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which can also be written in the form (46-49): 
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 Using Relationships (46-49) and System (35), Relationships (50-53) can be 

obtained immediately: 
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 Taking into account relations (50-53), equations (37-40) are rewritten as follows 

(54-57): 

                     0.).(.).(.2.. 31'
11

21'
12

*
11

*
1  x

x

y
my

x

y
mFyKyK e 








             (54) 

              0.).(.).(.2.).(. 32'
22

22'
23

*
22

*
2

*
11

*
1  x

x

y
my

x

y
myKyKKyK 








     (55) 

              0.).(.).(.2.).(. 33'
33

23'
3

*
33

*
3

*
22

*
2  x

x

y
my

x

y
mxKyKKyK 








       (56) 

                                 0.).(. 0
'
4

*
4

*
33

*
3  FxmxKKyK                         (57)  

 With the system of equations (54-57), the dynamic model shown in Figure 3 is 

solved, given that the system is nonlinear and besides the four main unknowns, y2, y3, 

x, Fe, six more unknown .,,,,, 3322 xxyyyy   occur, but dependent on each other and 

also depend on linear displacements, y2, y3, and x respectively. 
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 The system is greatly simplified if we consider the three speeds approximately 

equal to each other and equal to the known entry speed; In this case, the equation 

system (54-57) is considerably simplified, taking the form (58-61): 

            02 '
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6. RESULTS; SOLVING THE DIFFERENTIAL EQUATION 

 In the paper was presented a dynamic model with a degree of mobility, internal 

damping of the variable system, which finally leads to the equation (54), which can be 

writhed in the form (62) and the simplified equation (53), arranged now in form (63). 
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'.'......).( 22

0                (62) 

''......).( 22
0 ymXmxkyKxkK T

II
S                          (63) 

 Differential equation (63), ie the simplified form (in which the reduced input 

velocity imposed by the cam profile y' is equal to the low dynamic velocity, x', both 

reduced to the valve axis) is used. 

6.1. Solving the differential equation, through a particular solution 

 Equation (63) is written as (64): 

ymxkyKXkKXm TS  ...).(. 0                         (64) 

 One divides equation (64) with mS and amplify the straight term with cost, thus 

obtaining the form (65): 

)cos(
)cos(

0 t
tm

ymxkyK
X

m

kK
X

S

T

S








 


              (65) 

 The following notations (66-67) are used: 
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 Equation (65) is written in simplified form (68): 

          ).cos(..2 tqXpX                 (68) 

 The particular solution of equation (68) is of the form (69): 

                 ).cos(. taX                                     (69) 

 Derivatives 1 and 2 of solution (69) are denoted by (70-71): 

               ).sin(.. taX                           (70) 

              ).cos(.. 2 taX                 (71) 

 By replacing values (69) and (71) in equation (68), form (72) is obtained: 

        ).cos(.).cos(..).cos(.. 22 tqtapta                 (72) 

 The characteristic equation is written as (73): 

                qpa  ).( 22                           (73) 

 It is explicit a in the form (74): 
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 Now write the solution X, under the forms (75), (76): 
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 For a more exact solution, we approximate directly in equation (74), X’’ cu y’’ cu 

s’’, ie syX   , and one arrives at the linear equation (77): 
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6.2. Solving the differential equation, through a complete private solution 

 Equation (64) can be written as (78), taking into account coefficients D and D ': 
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 One divides equation (78) with mS.2.D and obtain the form (79): 
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 The right term is amplified with (cos+sin) and equation (79) is written as (80): 
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 We note the corresponding coefficients (81-83): 
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 Equation (80) can now be written as (84): 

    )sin.(cos.'.''   cxbxax                         (84) 

 The complete particular solution of equation (84) is of the form (85), and its 

derivatives according to the angle , the derivatives I and II, take the forms (86), 

respectively (87): 

 sin.cos. BAx                                     (85) 

 cos.sin.' BAx                                               (86) 

 sin.cos.'' BAx                                               (87) 

 Introducing solutions (85-87) in (84) one obtains equation (88): 
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 sin.cos.sin..cos..cos..sin..sin.cos. CCBbAbBaAaBA        (88) 

 We identify the coefficients in the cosine and those in the sin and one obtains 

a linear system of two equations with two unknown, A and B respectively: 
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 For the operative solving of the system (89) the first equation increases with a 

and the second with (b-1), after which B is collected and then determined by A, 

multiplying the first equation with (b-1) and the second one with -a, after which it 

collects and obtains the system (90): 
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 The solution can now be written as (91), where the coefficients a, b, c are known 

(81-83): 

                       ]sin)1(cos)1[(
)1( 22
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 abab
ba

c
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6.3. Solving the differential equation, with the help of Taylor series 

developments 

 Write the relation (92), which expresses the connection between the dynamic 

displacement of the valve, x, and that imposed by the cam profile, s: 

)()()()(   sxsx                         (92) 

 The function s(+) was developed in a Taylor series and retains the first 8 

terms of development; now find the relationship (93): 
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 The relationship (93) is also written in the form (94): 
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 By derivation it obtains x' (relation 95): 
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 Deriving the second time and get x'', (relation 96): 
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 The differential equation used is (62), ie the complete equation, which we write 

in the form (97), also taking into account the transmission function, D. 
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7. DISCUSSION 

 Dynamic analysis for sinus law, using the relationship (97), based on Taylor 

series and dynamic-A1 model, with variable internal damping, without considering the 

mass m1 of the cam. 

 Using the relation (97) obtained from the differential equation (62) based on the 

dynamic damping model of the variable system, without considering the mass m1 of 

the cam, but using Taylor series calculations with the retention of 8 consecutive terms, 

dynamic (A1). 

 For this dynamic model (A1) there is a single dynamic diagram (Figure 4). 
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Figure 4: Dynamic analysis using the dynamic A1 model 

 The SINus law is used, the engine speed, n = 5500 [rpm], equal ascension and 

descent angles, u=c=750, radius of the base circle, r0 = 14 [mm]. For the maximum 

stroke of the tappet, hT, equal to that of the valve, hS (i = 1), the value of h = 5 [mm] 

was taken. A spring elastic constant is adopted, k = 60 [N / mm], for a valve spring 

compression of x0 = 30 [mm]. 

 Mechanical yield is low (generally in rotary cam and punch mechanisms, 

mechanical efficiency has low values, and in Module C-classical distribution 

mechanism these values are even slightly lower), =6.9%. 

 The theoretical model presented and used has the advantages of simulating 

even the fine vibrations of the mechanism. 

8. CONCLUSIONS 

 The development and diversification of road vehicles and vehicles, especially 

of cars, together with thermal engines, especially internal combustion engines (being 

more compact, robust, more independent, more reliable, stronger, more dynamic 

etc.)., has also forced the development of devices, mechanisms, and component 

assemblies at an alert pace. The most studied are power and transmission trains. 

 The four-stroke internal combustion engine (four-stroke, Otto or Diesel) 

comprises in most cases (with the exception of rotary motors) and one or more 

camshafts, valves, valves, and so on. 

 The classical distribution mechanisms are robust, reliable, dynamic, fast-

response, and although they functioned with very low mechanical efficiency, taking 

much of the engine power and effectively causing additional pollution and increased 
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fuel consumption, they could not be abandoned until the present. Another problem 

was the low speed from which these mechanisms begin to produce vibrations and very 

high noises. 

 Regarding the situation realistically, the mechanisms of cam casting and 

sticking are those that could have produced more industrial, economic, social 

revolutions in the development of mankind. They have contributed substantially to the 

development of internal combustion engines and their spreading to the detriment of 

external combustion (Steam or Stirling) combustion engines. 

 The problem of very low yields, high emissions and very high power and fuel 

consumption has been greatly improved and regulated over the past 20-30 years by 

developing and introducing modern distribution mechanisms that, besides higher 

yields immediately deliver a high fuel economy) also performs optimal noise-free, 

vibration-free, no-smoky operation, as the maximum possible engine speed has 

increased from 6000 to 30000 [rpm]. 

 The paper tries to provide additional support to the development of distribution 

mechanisms so that their performance and the engines they will be able to further 

enhance. 

 Particular performance is the further increase in the mechanical efficiency of 

distribution systems, up to unprecedented quotas so far, which will bring a major fuel 

economy. 

 The paper presents a dynamic model that works with variable internal damping, 

applicable directly to rigid memory mechanisms. If the problem of elasticity is generally 

solved, the problem of system damping is not clear and well-established. It is usually 

considered a constant "c" value for the internal damping of the system and sometimes 

the same value c and for the damping of the elastic spring supporting the valve.  

 However, the approximation is much forced, as the elastic spring damping is 

variable, and for the conventional cylindrical spring with constant elasticity parameter 

(k) with linear displacement with force, the damping is small and can be considered 

zero. It should be specified that damping does not necessarily mean stopping (or 

opposition) movement, but damping means energy consumption to brake the motion 

(rubber elastic elements have considerable damping, as are hydraulic dampers).  
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 Metal helical springs generally have a low (negligible) damping. The braking 

effect of these springs increases with the elastic constant (the k-stiffness of the spring) 

and the force of the spring (P0 or F0) of the spring (in other words with the arc static 

arrow, x0=P0/k). Energy is constantly changing but does not dissipate (for this reason, 

the yield of these springs is generally higher).  

 The paper presents a dynamic model with a degree of freedom, considering 

internal damping of the system (c), damping for which it is considered a special 

function. More precisely, the cushioning coefficient of the system (c) is defined as a 

variable parameter depending on the reduced mass of the mechanism (m* or J 

reduced) and the time, ie, c depends on the derivative of m reduced in time.  

 The equation of the differential movement of the mechanism is written as the 

movement of the valve as a dynamic response. Dynamic analysis for sinus law, using 

the relationship (97), based on Taylor series and dynamic-A1 model, with variable 

internal damping, without considering the mass m1 of the cam. 

 Using the relation (97) obtained from the differential equation (62) based on the 

dynamic damping model of the variable system, without considering the mass m1 of 

the cam, but using Taylor series calculations with the retention of 8 consecutive terms, 

dynamic (A1). For this dynamic model (A1) there is a single dynamic diagram (Figure 

4). 

 The SINus law is used, the engine speed, n = 5500 [rpm], equal ascension and 

descent angles, u=c=750, radius of the base circle, r0 = 14 [mm]. For the maximum 

stroke of the tappet, hT, equal to that of the valve, hS (i = 1), the value of h = 5 [mm] 

was taken. A spring elastic constant is adopted, k = 60 [N / mm], for a valve spring 

compression of x0 = 30 [mm]. 

 Mechanical yield is low (generally in rotary cam and punch mechanisms, 

mechanical efficiency has low values, and in Module C-classical distribution 

mechanism these values are even slightly lower), =6.9%. 

 The original theoretical model presented and used has the advantages of 

simulating even the fine vibrations of the mechanism. 
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11. NOMENCLATURE 

*J  is the moment of inertia (mass or mechanical) reduced to the camshaft  

*
MaxJ  is the maximum moment of inertia (mass or mechanical) reduced to the 

camshaft  
*
minJ  

is the minimum moment of inertia (mass or mechanical) reduced to the 
camshaft  

*
mJ  is the average moment of inertia (mass or mechanical, reduced to the 

camshaft)   

*J '  
is the first derivative of the moment of inertia (mass or mechanical, reduced to 
the camshaft) in relation with the  angle  

i   is the momentary efficiency of the cam-pusher mechanism 
   is the mechanical yield of the cam-follower mechanism 
  is the transmission angle 
   is the pressure angle 
s  is the movement of the pusher 
h  is the follower stroke h=smax 
s’  is the first derivative in function of  of the tappet movement, s 
s’’  is the second derivative in raport of  angle of the tappet movement, s 
s’’’  is the third derivative of the tappet movement s, in raport of the  angle 
x  is the real, dynamic, movement of the pusher  
x’  is the real, dynamic, reduced tappet speed  
x’’  is the real, dynamic, reduced tappet acceleration 
x&&  is the real, dynamic, acceleration of the tappet (valve). 

v s &  is the normal (cinematic) velocity of the tappet 

a s &&  is the normal (cinematic) acceleration of the tappet 

  is the rotation angle of the cam (the position angle) 
K  is the elastic constant of the system   
k  is the elastic constant of the valve spring 
x0  is the valve spring preload (pretension)  
mc  is the mass of the cam 
mT  is the mass of the tappet  
ωm  the nominal angular rotation speed of the cam (camshaft)  
nc  is the camshaft speed  
n=nm  is the motor shaft speed nm=2nc 
  is the dynamic angular rotation speed of the cam 
  is the dynamic angular rotation acceleration of the cam 
r0  is the radius of the base circle 
=r  is the radius of the cam (the position vector radius) 
  is the position vector angle 
x=xc and 
y=yc 

 are the Cartesian coordinates of the cam 



 
 

 
[http://creativecommons.org/licenses/by/3.0/us/] 
Licensed under a Creative Commons Attribution 3.0 United States License 

 

2019 

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) 
http://www.ijmp.jor.br v. 10, n. 6, November - December 2019 

ISSN: 2236-269X 
DOI: 10.14807/ijmp.v10i6.905 

D   is the dynamic coefficient 
D&   is the derivative of D  in function of the time 
D'   is the derivative of D  in function of the position angle of the camshaft,  
Fm  is the motor force 
Fr  is the resistant force. 
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