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ABSTRACT 

This paper studies the rescheduling problem of a single machine 

facing unexpected disruptions in order to determine which 

parameters can help reducing the negative impacts of these 

disruptions on schedule performance. A Genetic Algorithm (GA) is 

used to generate the initial schedule and the updated ones according 

to a reactive strategy. The performance of event-driven rescheduling 

and periodic rescheduling policies are compared in terms of total 

tardiness and total cost of rescheduling. Other factors that may affect 

rescheduling such as disruption time, disruption duration and number 

of disruptions are investigated. The sensitivity of results to both due 

date tightness and cost factor variation is tested. The results showed 

that the timing of the occurrence of disruption as related to 

scheduling horizon has a major effect on determining the best 

rescheduling policy. Event-driven policy is superior to other policies 

for short infrequent disruptions. It was found that the periodic policy is 

more appropriate for long and frequent disruptions. 

Keywords: Single machine, rescheduling, event-driven, periodic, 

rescheduling frequency 
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1. INTRODUCTION 

 In a production system, the production schedule is developed for a certain 

scheduling horizon and released to the shop floor before production begins. 

However, once a schedule is released to the shop floor, it is immediately subject to 

random disruptions, which may render the original schedule obsolete and 

necessitate rescheduling. Examples of unexpected disruptions “rescheduling factors” 

include machine breakdown, arrival of urgent jobs, cancellation of an order, operator 

absenteeism, rework or quality problems, and shortage of raw materials.  

 Rescheduling is the process of generating a new executable schedule in 

response to unexpected disruption. Because disruptions at the shop floor are 

inevitable, the importance of rescheduling is comparable with that of scheduling. 

Proper rescheduling requires generating a new efficient schedule in a timely manner. 

 The classification of rescheduling studies introduced by Vieira et al. (2003) is 

adopted in this study. They have classified the rescheduling studies into four 

categories according to the rescheduling environment, rescheduling strategies, 

rescheduling methods, and rescheduling policies. In their classification, the 

rescheduling environment identifies the set of jobs that need to be 

scheduled/rescheduled; it can be static or dynamic.  

 The rescheduling strategy describes whether initial production schedules are 

generated or the jobs will be dispatched dynamically. The rescheduling policy 

specifies when rescheduling should occur; it can be event-driven, periodic or hybrid. 

And rescheduling methods describe how updated schedules are generated; it can be 

complete schedule regeneration or only repairing the original schedule. 

 From an industrial point of view, the aim of rescheduling is typically to find a 

trade-off between efficiency in terms of a specified scheduling objective function (e.g. 

makespan, total flow time and total tardiness) and stability in terms of the difference 

between original and new schedules. The alternations after disruptions to the initial 

schedule inevitably make some earlier preparations (e.g. setups, materials supply 

and tooling) obsolete, thereby incurring additional costs. It is necessary and 

reasonable for the newly generated schedule to minimize or restrict the variances 

from the initial schedule as reported by LIU and ZHOU (2015). 
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  The literature on production rescheduling includes different machine 

environments. MASON et. Al. (2004), DONG and JANG (2012), MORATORI and 

PETROVIC (2012) studied the rescheduling of job shops. While Caricato and Grieco 

(2008), Chiu and shih (2012) and Katragjini, Vallada and Ruiz (2013), studied the 

rescheduling of flowshop. Parallel machine rescheduling is studied by Vieira, 

Hermannn and Lin  (2000), Liu and Zhou (2013) and Arnaout (2014). Also Flexible 

manufacturing systems (FMS) rescheduling studies was found in literature such as 

Zakaria and Petrovic (2012) and Jain, Foley (2016). 

 Although several studies have considered the single machine rescheduling 

problem for new jobs arrival, little attention has been given to the rescheduling 

problem with machine breakdown.  

 The problem of new job insertion into a single machine schedule has been 

studied by LIU and ZHOU (2015), VIEIRA, HERMANN, and LIN (2000), LIU and 

ZHOU (2012), AKKAN (2015), HOOGEVEEN, LENTÉ, T’KINDT (2012), UNAL, 

UZSOY, and KIRAN (1997), YANG  (2007) and GUO et al. (2016).  

 Vieira, Hermann and Lin (2000) suggested an analytical model, which uses 

FIFO dispatching rule to sequence jobs, to estimate the performance of both event-

driven and periodic rescheduling in terms of average flow time and machine 

utilization. While Liu and Zhou (2012) used Variable Neighborhood Search (VNS) 

algorithm to solve to near optimal solution for single machine maximum lateness 

rescheduling problem subject to an upper limit on the total sequence disruption.  

 Akkan (2015) used simple heuristics in addition to hybrid branch-and-

bound/local search algorithm to find the most stable schedule among schedules with 

minimal maximum tardiness. And Hoogeveen; Lenté and T’kindt (2012) studied new 

job insertion problem in single machine schedule to minimize total cost of disruption 

and to minimize number of setups. 

 Unal, Uzsoy and Kiran (1997) considered the problem of rescheduling a 

facility modeled as a single machine in the face of newly arrived jobs with part-type 

dependent setup times. They provided a polynomial time algorithm to minimize the 

maximum completion time of the new jobs.  

 Yang (2007) considered single machine rescheduling problem for new jobs 

arrival, in which jobs processing time can be reduced at a cost, with the objective to 
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 minimize total cost after rescheduling. (LIU; ZHOU, 2015) studied the rescheduling 

problem of a single machine in response to an unexpected arrival of new jobs, where 

both the deterioration and learning effects are considered. 

 Zakaria and Petrovic (2012), Moratori and Petrovic (2012), Vallada and Ruiz 

(2010), Kundakci and Kulak (2016), Armentano and Mazzini (2000) and Ribeiro and 

Souza (2009) have used the Genetic Algorithms to solve different scheduling 

problems. They have reported that GA can achieve good solutions in a time efficient 

way. 

 As seen from the literature review, most of authors have adopted the reactive 

strategy for rescheduling, in which an initial schedule is generated then it’s updated 

according to a specific policy to minimize its impact on system performance. Also, 

approximate methods for optimization have been used widely since most of 

scheduling problem are NP-hard.  

 Quite recently, researchers started to use stability based performance 

measures for the rescheduling problem to reduce systems nervousness. Most 

researches on single machine rescheduling problem have considered the disruption 

of new jobs arrival because of the fact that manufacturing systems are dynamic and 

new jobs continue to arrive while executing the initial schedule.  

 But the disruption of machine breakdown has been merely considered in 

single machine rescheduling problem despite of its importance. Also, most of the 

previous studies did not take into account the effect of disruption timing although it 

may affect the rescheduling decision.  

 In this paper, the single-machine rescheduling problem with unexpected 

disruptions is addressed. A genetic algorithm is used to generate both initial 

schedule and the updated one according to a reactive strategy. This study compares 

the performance of three rescheduling policies; right-shift rescheduling, event-driven 

rescheduling, and periodic rescheduling policy. Total tardiness is used as a measure 

of schedule efficiency. And total cost is used as a combined efficiency and stability 

measure. And there has been no reported work on this issue so far. 

 The rest of the paper is organized as follows: In Section 2, the proposed study 

will be detailed. Section 3 is devoted to computational results and discussion. The 

conclusion is reported in Section 4. 
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 2. THE PROPOSED STUDY 

 This section describes the scheduling/rescheduling problem, the experimental 

design, and the proposed model under which the rescheduling policies are studied. 

2.1. Problem description 

 This work considers the problem of scheduling/rescheduling of a single 

machine under two different objectives; minimizing the total tardiness and minimizing 

the total cost. At the beginning of the scheduling horizon there is a certain set of jobs 

to be scheduled. So, it is a static scheduling problem. Different rescheduling 

approaches are adopted and the performances of different rescheduling policies are 

to be compared in terms of total tardiness and total cost. 

 This study is based on the following assumptions: 

• The planning horizon is a single period (one month) and jobs that 

arrive during schedule execution will be delayed till the end of 

current schedule (Frozen MPS).  

• The processing times and due dates for jobs are deterministic 

and dependent on the jobs. 

• All jobs are available at time zero.  

• Every single job is assumed to be a batch which can’t be split.  

• Processing of disrupted jobs is to be resumed immediately after 

disruption is over. 

• Machine setup time is included in the processing time for each 

job and it is independent of the preceding job. 

• The time of disruption occurrence and the duration of downtime 

resulted from each disruption are probabilistic, following a 

uniform probability distribution.  

• The machine can process only one job at a time. 

• Materials are delivered to the shop floor according the initial 

schedule. 
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 • The required raw material for each job is to be supplied just 

before the starting time of the job.  

• WIP inventory is charged with holding cost according to the time 

spent in manufacturing workshop. 

 During the execution of the schedule, unexpected disruptions may occur. To 

overcome the forthcomings of these disruptions, the following rescheduling actions 

may be applied as policies: 

a) Right-shift rescheduling: Unprocessed jobs’ start times are shifted 

forward by the amount of disruption durations keeping the initial jobs’ 

processing sequence. 

b) Event-driven rescheduling: complete rescheduling of all unprocessed 

jobs at time of disruption. 

c) Periodic rescheduling: rescheduling is made periodically with fixed 

intervals of time. If disruptions took place before the beginning of any 

interval, the Right-Shift rescheduling action is taken until the processing 

situation is revised at the beginning of each interval for rescheduling. 

 The following are the problem parameters considered in this study are: 

a) Rescheduling policy: This refers to whether schedule will be revised 

periodically at equal time intervals, or only at the time of disruption or will 

not be revised at all.  

b) Time of disruption occurrence: This refers to the time of disruption 

occurrence relative to the planning period. 

c) Number of disruption occurrences: this refers to the number of 

disruptions that occur during the planning period. 

d) Disruption duration: This refers to the duration of the downtime due to 

disruption.  

e) Jobs’ processing time (pj): this refers to the jobs’ processing time 

compared to the disruption duration. It is expressed in terms of the 

number of jobs to be scheduled at the same planning horizon. Such that 

smaller number of jobs means longer processing times and the vice versa. 
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 Jobs’ processing times are N uniformly distributed random variables such 

that pj ϵ U[6, 24], . Where N is the number of jobs. 

f) Due date tightness: this indicates how jobs’ due dates are spaced in 

time. The following tightness measure suggested by Pinedo (2010) is 

used in this study: 

 

(1) 

Where  is the average of the due dates, and  is the makespan. Values 

of  close to 1 indicate that the due dates are tight and values close to 0 

indicate that the due dates are loose. 

Jobs’ due dates, dj, are N uniformly distributed random variables such that dj ϵ 

U[8, 176*β]. Where β is a percentage factor controlling due date tightness and 

it will be initially set to 1. 

2.2. Mathematical Modelling 

 The mathematical modelling of the problem is based upon the work of 

Armentano and Mazzini (2000) on a similar problem with some modifications to 

adapt the assumptions of this study. 

 Also the rescheduling cost function used in this study is based upon the cost 

function proposed by  Naseri and Kuzgunkaya (2010) for a flexible manufacturing 

system (FMS) with some modifications to adapt single machine rescheduling costs. 

 Notations, sets, and variables used in this model are presented in Table 1. 

Table 1: Notations, sets and variables 
N Total number of jobs to be scheduled 
J The job number, where j = 1, …, N. 
R Rescheduling frequency (total number of rescheduling times). 
R The number of the rescheduling time, where r = 1, …, R. 
D Total number of disruptions. 
D The disruption number, where d = 1, …, D. 
Υ The initial schedule. 

 

Due date tightness factor, where . 
 

Time of the rescheduling (r) [in hrs.]. 
Jo Set of jobs to be initially scheduled, where Jo = {1, …, N}. 
Tj Tardiness of job (j) [in hrs.]. 
Pj Processing time of job (j) [in hrs.]. 
dj Due date of job (j) [in hrs.]. 
Cj Completion time of job (j) [in hrs.]. 
Sj Starting time of job (j) [in hrs.]. 



 
 

 
[http://creativecommons.org/licenses/by/3.0/us/] 
Licensed under a Creative Commons Attribution 3.0 United States License 

 

165 

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) 
http://www.ijmp.jor.br v. 10, n. 1, January - February 2019 
ISSN: 2236-269X 
DOI: 10.14807/ijmp.v10i1.838 
 

 
 

Starting time of job (j) in the updated schedule [in hrs.]. 

 

Starting time of job (j) in the initial schedule [in hrs.]. 

 

Partial schedule of the completed jobs. 
 

Partial schedule of the uncompleted jobs. 
 

Actually realized schedule. 
S[k](υ) Start time of jobs k in schedule υ [in hrs.]. 
C[k](υ) Completion time of job k in schedule υ [in hrs.]. 
π* Optimized jobs’ sequence. 
DSd Start time of disruption (d) [in hrs.]. 
DEd End time of disruption (d) [in hrs.]. 
DLd Duration of disruption (d) [in hrs.]. 
Yjd Binary variable that indicates whether the disruption (d) occurred 

during the processing of job (j). 
Α Tardiness penalty cost for each time unit of tardiness [in L.E./hr.]. 
Μ WIP holding cost for each time unit of holding [in L.E./hr.]. 
Τ Material expediting cost for each time unit of expediting [in 

L.E./hr.]. 
 

Scheduling / rescheduling cost for each schedule generation [in 
L.E./Schedule]. 

 The objective functions are: 

Min.  (3) 

Min.  (4) 

Subject to: 

 

(5) 

 

(6) 

Where: 

                                      d = 1, 2,..., D (7) 

 (8) 

 
(9) 

 

(10) 

 

(11) 

 

(12) 

                             >  (13) 
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           >  (14) 

 

(15) 

 

(16) 

                             (17) 

 Eq. (3) represents the objective of minimizing the total tardiness, which is the 

summation of tardiness for all jobs, . Eq. (4) represents the other objective of 

minimizing the total cost, which is the summation of the costs of tardiness ( ), 

earliness ( ), material expediting ( ), WIP holding ( ) and 

scheduling/rescheduling.  

 Expression (5) implies that the start time of a particular job ( ) is greater 

than or equal to the summation of the processing time of the previous job (Pj), 

previous jobs start time (Sj) and the disruption duration , if any exists then (Yjd 

=1) otherwise (Yjd =0).  

 Expression (6) shows that Jobs can’t be split such that after disruption is over, 

the disrupted job starts processing from the same point where it was before 

disruption. So the completion time of the disrupted job (k) is equal to the sum of 

completion time of previous job ( ), processing time of the disrupted job ( ) and 

the down time due to disruption ( ).  

 Expression (7) defines the disrupted job (k) whose completion time, , lies 

between disruption, Dd, start time ( ) and disruption end time ( ).  

 Expression (8) defines job tardiness, , as the positive difference between job 

completion time, , and its due date, . Expression (9) implies that all disruptions 

occur within schedule makespan.  

 Expression (10) defines the rescheduling start time, , according to the 

rescheduling policy. Such that it equals the disruption start time, , for event-

driven policy. And it equals the rescheduling period multiplied by an integer whose 

value changes from 1 to the rescheduling frequency, R. 

 Eq. (11) implies that the initial schedule has no idle time between jobs, and 

the starting time of the first job is zero. 
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  Eq. (12) represents the penalty cost of jobs’ tardiness. Eq. (13) represents the 

cost of holding material for jobs which were the next in order when the rescheduling 

triggered and their start time changed in the new schedule, , to start later than 

the initial schedule, . Since their material is already delivered to the shop floor.  

 Eq. (14) represents the cost of expediting material for jobs whose start time 

has changed in the new schedule to be started earlier than the initial schedule. Eq. 

(15) represents the cost of earliness. Eq. (16) represents the cost of 

scheduling/rescheduling which is the cost of schedule computation and the wage of 

the scheduler. Expression (17) shows that Job processing time, job due date, job 

completion time, disruption start time, disruption end time, and job tardiness are all 

non-negative values. 

2.3. The genetic algorithm (GA) 

 In the used GA, the chromosome encoding is a job-based representation. 

Each chromosome represents a processing sequence. An inversion mutation 

operator is used in which two random positions in the parent are chosen and the 

genes between the two points are inverted, while those outside the points are 

retained. 

 Two crossover operators are used simultaneously in the GA, namely 

precedence preservative and set-partition operators. One child is produced from two 

parents once by the Set-Partition crossover operator, and another child is produced 

from the same parents by the Precedence Preservative crossover operator. Both 

children are then evaluated according to the fitness function, and the child that has 

the better fitness value proceeds to the following generation. 

 The GA parameters that are used are presented in Table 2. 

Table 2: Genetic algorithm parameters 
Parameter Value 
Population size 50 
Cross over rate 0.9 
Mutation rate 0.1 
No. of elite children 1 
No. of generations 1000 

 The cross over rate of 0.9 and the number of elite children of 1 are determined 

through a factorial experiment (ANOVA technique) reported by Church and Uzsoy 

(1992) for the same cross over and mutation operators. 
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 2.4. Experiments design 

 Production rescheduling may be affected by many factors and our concern is 

to estimate the effect of these factors on the rescheduling decision, as well as the 

effect of possible interactions between these factors. In each complete trial of the 

experiment all possible combinations of all levels of the factors are investigated.  

 Using Minitab® statistical software, a general factorial experiment, in which 

more than two factors are considered and each factor has different number of levels, 

is designed to study the performance of different rescheduling policies in terms of the 

total tardiness and the total cost as performance measures.  

 The experiments include the following factors: 1) rescheduling policy. 2) time 

of disruption occurrence. 3) Number of disruptions during the planning period. 4) 

Disruption duration. 5) jobs processing time represented by different number of jobs 

to be scheduled in the same planning horizon. 6) the optimization objective 

(minimum total tardiness or minimum total cost). The experiment is designed to 

consider different disruption parameters to optimize a certain objective of interest. 

Table 3 shows the designed experiments for this study. 

 The disruption parameters are the number of disruption occurrences, 

disruption duration and the time of disruption occurrence.  

 The number of disruptions, D, is an input variable and it changes to reflect 

different levels of disruption frequency (Table 3). The disruption duration, DLd, is an 

input variable and it changes to reflect different levels of the downtime resulted from 

disruptions. According to the number of disruptions the model generates random 

uniformly distributed values, DLd, based on the level of disruption duration (Table 3). 

 The time of disruption occurrence, DSd, is an input variable representing 

disruption start time and it changes to reflect the fact that the disruption can start at 

different times of schedule execution. Such that it can start early, at the middle or 

late in the makespan. The model generates random uniformly distributed values, 

DSd, within a predefined time interval based on the level of disruption time (Table 3). 
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 Table 3: Experiments design 
 Experimental factor 

Policy Time of 
disruption 

Number of 
disruptions 

Disruption 
duration 

Jobs’ 
Processing 

time 

Optimization 
Objective 

Factor 
levels 

Event-
driven 

Early 
[0.05M**, 
0.35M] 

None  
(0) 

Short 
[0.02 

TWK***, 
0.04 
TWK] 

 

Small 
(10 jobs) 

Min. total 
tardiness 

Periodic 
(r*=0) 

Periodic 
(r=2) 

Small  
(1) 

Middle 
[0.35M, 
0.65M] 

Periodic 
(r=4) Medium  

(2) Long 
[0.07 
TWK, 
0.14 
TWK] 

Large 
(25 jobs) 

Min. total 
cost 

Periodic 
(r=6) 

Periodic 
(r=8) Late 

[0.65M, 
0.95M] 

Large  
(3) 

Periodic 
(r=10) 

Periodic 
(r=20) 

* r is the rescheduling frequency. 
** M is the makespan of the initial schedule. 
*** TWK is the total work content ( ). 

2.5. Scheduling/rescheduling model 

 The developed production rescheduling model aims at introducing the 

unexpected disruption to the initial production schedule and generates an updated 

production schedule. The rescheduling model is composed of two stages; the first 

one is for generating the initial schedule and the second is for updating the initial 

schedule according to the policy followed. 

2.6. Generating initial schedule 

 Let Jo = {1, …, N} be the set of original jobs that are scheduled for processing 

on the machine. The model uses this set of jobs to construct a row vector which is 

used as the chromosome for the genetic algorithm. The genetic algorithm finds the 

best sequence, π*, that optimizes the objective function.  

 So, it is assumed that the jobs of π* have been sequenced optimally to 

minimize the objective function at time zero. Then, the model constructs an initial 

schedule, υ, for the jobs sequence π*. The decision variable is jobs’ start times in 

schedule υ, S[j](υ), for j ϵ Jo. Let C[j](υ) be the completion time of job j in schedule υ 

and is the job in the kth position in the sequence π*. 
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  Algorithm 1: Constructing initial schedule 

Step 1: Use set of original jobs, Jo, to form a row vector x. 

Step 2: Set schedule start time equal zero. 

Step 3: Input vector x to GA to get optimized sequence π*. 

Step 4: Construct initial schedule, υ, according to π*. 

2.7. Generating updated schedules 

 The model uses one of three different algorithms to generate the updated 

schedule according to the rescheduling policy followed. In the following, there is a 

set of disruptions start time, DSd = {DS1, …, DSD}, which are randomly generated. 

 Algorithm 2: Right-shift rescheduling 

 According to the right-shifting policy, the algorithm keeps the initial sequence 

of jobs. And only right-shifts the start time of all jobs that start after the disruption by 

the amount of disruption duration, DLd. 

Step 1: Generate disruption parameters (No. of disruptions, timing, and duration). 

Step 2: For each disruption, Dd, find the disrupted job k where S[k](υ) ≤ DSd ≤ 

C[k](υ). 

Step 3: Identify the partial schedule of completed jobs,  = Jo{1, …, k}. 

Step 4: Add disruption duration to the completion time of job k in . 

Step 5: Identify another partial schedule of the unprocessed jobs,  = Jo{k+1, …, 

N}. 

Step 6: Add disruption length, DLd, to start and completion time of all jobs in . 

Step 7: Merge the partial schedules,  and  into . 

Step 8: set υ = . 

Step 9: Repeat step 2 through 8 for all disruptions D. 

Step 10: Calculate total tardiness and rescheduling total cost on realized 

schedule, υ. 
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  Algorithm 3: Event-driven policy to update schedule  

 In event-driven rescheduling policy the model generates a new schedule, υ*, 

for the unprocessed jobs, Juc, using the GA at the time of disruption, DSd. 

Step 1: Generate disruption parameters (No. of disruptions, timing, and 

duration). 

Step 2: For each disruption, Dd, find the disrupted job k where S[k](υ) ≤ DSd ≤ 

C[k](υ). 

Step 3: Identify partial schedule of completed jobs,  = Jo{1, …, k}. 

Step 4: Add disruption duration to completion time of jobs k in . 

Step 5: Identify partial schedule of unprocessed jobs, Juc = Jo{k+1, …, N}. 

Step 6: Set start time  of partial schedule of unprocessed jobs, , equal C[k](υ) 

+DLd. 

Step 7: Run GA for all jobs in Juc and get updated jobs sequence π*. 

Step 8: Construct updated partial schedule of unprocessed jobs, , according to 

updated sequence π*. 

Step 9: Merge partial schedules,  and  into . 

Step 10: set υ = . 

Step 11: Repeat step 2 through 10 for all disruptions D. 

Step 12: Calculate total tardiness and rescheduling total cost on realized 

schedule, υ. 

 Algorithm 4: Periodic policy to update schedule  

 In periodic rescheduling policy, in addition to the set of disruptions, there is a 

set of predefined rescheduling times, Qr = {Q1, …, QR}, equally spaced along the 

planning horizon based on the given rescheduling frequency. At each rescheduling 

time, Qr, the model generates a new schedule for the unprocessed jobs.  

Step 1: Generate disruption parameters (No. of disruptions, timing, duration). 

Step 2: For each disruption, Dd, find the disrupted job k where S[k](υ) ≤ DSd ≤ 

C[k](υ). 
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 Step 3: Identify partial schedule of completed jobs,  = Jo{1, …, k}. 

Step 4: Add disruption duration to completion time of jobs k in . 

Step 5: Identify partial schedule of unprocessed jobs,  = Jo{k+1, …, N}. 

Step 6: Add disruption length, DLd, to start and completion time of all jobs in . 

Step 7: Merge partial schedules,  and  into . 

Step 8: set υ = . 

Step 9: For each rescheduling time, Qr, find job Y where S[Y](υ) ≤ Qr ≤ C[Y](υ). 

Step 10: Identify partial schedule of processed jobs, Juc = Jo{Y+1, …, N}. 

Step 11: Run GA for all jobs in Juc and get updated jobs sequence π*. 

Step 12: Construct updated partial schedule of unprocessed jobs, , according 

to updated sequence π*. 

Step 13: Merge partial schedules,  and  into . 

Step 14: set υ = . 

Step 15: Repeat step 2 through 14 for all rescheduling times Qr. 

Step 16: Calculate total tardiness and rescheduling total cost on realized 

schedule, υ. 

3. RESULTS AND DISCUSSION 

 This section provides the computational results of different rescheduling 

policies at different disruption parameters. Results are classified in sections 

according to the performance criteria. 

3.1. Minimum total tardiness 

 The three rescheduling policies under examination are: right-shift 

rescheduling policy, event driven policy and periodic policy. Each policy is tested 

under different disruption parameters. The disruption parameters are the number of 

disruptions, disruption duration and the time of disruption occurrence. The objective 

function is to minimize the total tardiness.  
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  Figure 1 shows the performance of three rescheduling policies in terms of 

total tardiness for different disruption parameters. Each value in the graphs is an 

average of 10 trials. 

 Figure 1 shows the total tardiness at six different disruption parameters for 25 

jobs problem. The left and right panels show the results for short and long disruption 

duration, respectively. From the graph it is seen that as the disruption starts late, the 

total tardiness decreases, and performance of the three rescheduling policies are 

very close.  

 This may be due to the fact that the later the disruption begins the less the 

number of affected jobs. Hence the smaller total tardiness. Also when 

scheduling/rescheduling has the objective of minimizing total tardiness, jobs with 

largest slack time come at the end of the schedule. So, the effect of the disruption 

can be absorbed due to slack time.  

 Also, it can be noted that the earlier the disruption begins the more the 

affected number of jobs and the more the jobs tend to miss its due date, hence the 

total tardiness increases significantly. The periodic policy tends to be superior to the 

other rescheduling policies for long disruptions while the event-driven policy tends to 

be superior to other policies for short disruptions. 

 Figure 2 shows the results of rescheduling policies under the same disruption 

parameters (long, middle disruption) for different problem sizes. The graph shows 

that when the machine is prone to long disruption duration, the periodic policy will 

result in the minimum total tardiness regardless of the problem size.  

 This is because some jobs may have tight due dates, so when generating the 

initial schedule, schedules that don’t begin with these jobs will be excluded because 

of large total tardiness. But after the completion of these jobs, there’s a better 

opportunity for the scheduling algorithm to find another schedule that will result in 

lower total tardiness than that which resulted from keeping the initial schedule.  

 The opportunity for finding better solutions arise from the fact that the 

tardiness of jobs whose completion time is less than its due date is zero, so the 

starting time of these (early) jobs can be right-shifted to some extent, |dj - Cj|, without 

increasing its tardiness. Hence, the tardy jobs can be rescheduled to start earlier so 

its tardiness decreases, and the total tardiness decreases. 
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  Figure 3 is the same as Figure 2 but for short middle disruption. The graph 

shows that event driven policy outperforms other rescheduling policies in terms of 

total tardiness when the machine is prone to short disruptions. This is because 

rescheduling at time of short disruption makes benefit of the available slack time of 

greater number of jobs than that number of jobs available when waiting until the next 

rescheduling time in the periodic policy. 

 
Figure 1:Total tardiness resulted from different rescheduling policies at 

different disruption durations and different time of disruption occurrence and 
problem size 25 job. 

 
Figure 2: Total tardiness for different 

rescheduling policies with long middle 
disruption and different problem size. 

 
Figure 3: Total tardiness for different 

rescheduling policies with short 
middle disruptions and different 

problem sizes. 
 It can be noted from Figure 2 and Figure 3 that the total tardiness increases 

with increasing the number of jobs. The reason is that the due dates of the larger 

problem is more tight than that of the small one, because both sets of due dates 

have been generated from the same uniform distribution using the same parameters 

U[8, 176]. By calculating the tightness measure, ,for both sets of due dates it will 

result in 0.33 and 0.68 for the small and large problem, respectively. So the jobs with 

more tight due dates are more likely to miss their due dates. Hence they have higher 

total tardiness. 
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  The effect of the rescheduling frequency on the total tardiness is shown in 

Figure 4. The graph shows the percentage improvement in total tardiness for 

periodic rescheduling with different frequency at different values for the total 

disruption duration compared to the right-shifting policy.  

 From the graph it can be noticed that at low-to-moderate values of total 

disruption time increasing the rescheduling frequency may reduce the total tardiness 

(higher percentage improvement). This may be due to the utilization of the slack time 

for some jobs to decrease the tardiness of other jobs explained earlier. 

 
Figure 4: Percentage improvement in total tardiness due rescheduling for 
different rescheduling frequency at different values for total disruption time 

compared to right-shifting policy. 
 Also it can be noted from Figure 4  that the average improvement (dashed-

line) compared to the right-shifting policy increases as the total disruption duration 

increases to a some value of the total disruption duration after which the 

improvement that can be obtained from rescheduling decreases regardless of the 

rescheduling frequency.  

 For example, at total disruption duration of 150 the rescheduling frequency of 

2 will yield the same improvement as rescheduling frequency of 20. This behavior 

may be due to the fact that at some value of the total disruption time, the due date of 

the farthest job will be equal to the summation of remaining jobs processing time and 

total disruption time as follows: 

 

(18) 
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  This means that, at this value the slack time of all remaining jobs is less than 

or equal zero (no slack time). Hence, no more right-shifting is possible without 

increasing the total tardiness. 

 The effect of the number of disruptions on the performance of different 

rescheduling policies is shown in Figure 5. The figure shows the total tardiness 

resulted from rescheduling with different frequencies at different number of 

disruptions with the same total disruption duration. 

 It can be concluded from the figure that frequent short disruptions results in 

smaller total tardiness than that results from one long disruption. This is because 

long disruptions at the beginning of schedule affect larger number of jobs than that 

affected by short successive disruptions (Figure 1). On the other hand, the effect of 

small disruptions can be reduced by frequent rescheduling utilizing the slack time of 

the remaining jobs. 

 
Figure 5: Total tardiness resulted from different rescheduling frequencies at 

different number of disruptions with the same total disruption duration 
3.2. Minimum total cost 

 In this subsection the same rescheduling policies are examined but the 

objective function is to minimize the total cost. Figure 6 shows the total cost resulted 

from different rescheduling policies at different disruption duration and time of 

disruption occurrence. It can be noticed from the graph that the total cost is higher 

for early disruptions. This is because of the increased total tardiness resulted from 

early disruptions so the tardiness penalty cost increases significantly (Figure 1). 

 Also it can be noticed from Figure 6 that right-shifting policy will result in the 

minimum total cost. This is because of the high cost of scheduling/rescheduling 
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 relative to other cost elements. Although right-shifting policy will result in higher 

tardiness than other rescheduling policies (Figure 1), but the increased tardiness 

cost will be less than the rescheduling cost incurred due to increased rescheduling 

frequency. 

 The results show that the ratio between the scheduling/rescheduling cost and 

the tardiness cost,  /α, has a significant effect on the performance of rescheduling 

policies in terms of the total cost. Figure 7 Shows the total rescheduling cost for 

different rescheduling frequencies at different values of the ratio between the 

scheduling/rescheduling cost and the tardiness penalty cost.  

 Results represented in Figure 7 are at the same number of disruptions and 

total disruption duration. It can be noticed from Figure 7 that at relatively small ratios 

of scheduling cost to the tardiness penalty, high rescheduling frequency results in 

reduction of the total costs due to the corresponding reduction of total tardiness 

(Figure 4). But as this ratio increases the rescheduling becomes too expensive and 

keeping the initial schedule results in minimum total cost despite the increased total 

tardiness. 

 Figure 8 and Figure 9 show the total cost results for different rescheduling 

policies for different problem sizes at middle short and long disruptions, respectively. 

It can be noticed from the graph, the total cost increases significantly when problem 

size increases. This is because of the increased tardiness that resulted from 

increased tightness for larger problem size which was explained in section 3.1. 

 
Figure 6: Total cost resulted from different rescheduling policies at different 
disruption durations and different time of disruption occurrence and problem 

size 25 job. 
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Figure 7: Total cost of rescheduling for different rescheduling frequencies at 

different values of scheduling/tardiness cost ratio. 

 
Figure 8: Total cost resulted from 
different rescheduling policies at 

short middle disruption for different 
problem size. 

 
Figure 9: Total cost resulted from 
different rescheduling policies at 

long middle disruption for different 
problem size. 

3.3. Sensitivity analysis 

 The main purpose of sensitivity analysis in this study is to identify the sensitive 

parameters, that changes in their values could result in significant changes in the 

rescheduling decision. In this section, the sensitivity of our results to changes in due 

date tightness coefficient and cost coefficients is tested. 

3.4. Due date tightness 

 In studying the sensitivity of tardiness results to changes in due date 

tightness, three values of tightness factor, φ: 0.4, 0.6 and 0.8 are used to represent 

three levels of due date tightness following the work of Armentano and Mazzini 

(2000). The due date tightness factor is calculated form Eq. (1) and it has a 

maximum value of 1. Such that, values of  close to 1 indicate that the due dates are 

tight and values close to 0 indicate that the due dates are loose.  
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  The effects of due date tightness have been tested under the following 

conditions: 

1. Rescheduling policy: Event driven and Periodic (r=0, 4, 8, 20) 

2. Objective function: minimum total tardiness. 

3. Problem size: large (25 jobs). 

4. The effect of rescheduling is expressed in terms of the percentage 

improvement which is defined as the ratio between rescheduling policy’s 

result and the right-shifting policy’s result. 

 Figure 10 show the total tardiness that results from different rescheduling 

policies due to changing the due date tightness factor for a large problem size (25 

jobs). The results in the graph are obtained at the disruption parameters of three 

long middle disruptions. It can be noticed from Figure 10, the total tardiness is 

sensitive to changes in due date tightness factor between the values of 0.4 and 0.8. 

And the total tardiness increases as the due dates tightness increases. This is 

because more jobs tend to miss their due date when due dates are too tight. 

 Also, it can be noticed from Figure 10 that, when due dates are loose, periodic 

rescheduling will be superior to the other policies. This is because jobs with loose 

due dates have more slack time. So more frequent rescheduling in periodic 

rescheduling policy makes better utilization of the available slack time for all jobs.  

 
Figure 10: Total tardiness changes due to changing due date tightness factor 

with long middle disruption for 25 jobs problem. 
 In Table 4, the total tardiness results for different rescheduling policies and the 

percentage improvement in performance at different levels of due date tightness 

factor are presented. It can be noticed that, for tight due dates all rescheduling 

policies don’t result in significant improvement in performance (Table 4) and they 
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 performs almost the same. This is because of that, at tight due dates jobs don’t have 

much slack time and there’s less opportunity to utilize this slack time to generate 

better schedule with lower total tardiness. As jobs’ due dates get looser, the 

rescheduling frequency becomes more significant and this is consistent with the 

results reported by Church and Uzsoy (1992). 

Table 4: Effect of due date tightness and rescheduling policy on total tardiness 

Policy 
Tightness factor (φ) 

0.4 0.6 0.8 
Right-shifting (r=0) 198 707 1003 

Event-driven 
(% Improvement) 

163 699 967 
(18%) (1%) (4%) 

Periodic (r=4) 
(% Improvement) 

159 693 957 
(20%) (2%) (5%) 

Periodic (r=8) 
(% Improvement) 

157 688 953 
(21%) (3%) (5%) 

Periodic (r=20) 
(% Improvement) 

145 617 953 
(27%) (13%) (5%) 

3.5. Cost coefficients 

 Cost coefficients used in the cost function could be changed according to 

company’s priorities determined by the nature of its industry. These cost coefficients 

considered in this study are the tardiness cost, material expediting cost and WIP 

holding cost. The effect of changing these cost coefficients on the total cost is 

studied. 

 Through this analysis, five levels are considered for each cost coefficient: 0.1, 

0.5, 1, 5, 10. One coefficient is changed at the time and the others are held constant. 

 Figure 11 shows the total cost for different rescheduling policies that resulted 

from changing the tardiness cost coefficient. From the graph it can be concluded that 

the total cost is sensitive to the tardiness cost coefficient, α, since changing in its 

value leads to significant change in the total cost.  

 This is because when the value of the tardiness cost coefficient increases, 

jobs tend to finish earlier than their due dates. Hence incurring earliness cost in 

addition to the increase of the tardiness cost, so the total cost increases significantly. 

So, the tardiness cost coefficient can be considered as dominant. 

 Figure 12 shows the total cost for different rescheduling policies that resulted 

from changing the WIP holding cost coefficient. It can be noticed from the graph that 
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 the total cost is robust to changes in the values of WIP holding cost coefficient, μ, 

between the values of 0.01 and 10, and then it becomes sensitive for greater values.  

 Because by significantly increasing the value of WIP hold cost coefficient, the 

cost of delaying the start of job processing whose material has already delivered to 

the shop floor and start processing another job becomes too expensive. Also the 

earliness cost of the jobs that finish before their due date becomes too expensive, 

which leads to a significant increase in the total cost.  

 Finally, Figure 13 shows the total cost for different rescheduling policies that 

resulted from changing the material expediting cost coefficient. It can be noticed from 

the figure that, changing the value of the expediting cost coefficient between 0.01 

and 100 has almost no effect on the total cost. So, the total cost results could be 

considered robust to changes in this cost coefficient. 

 
Figure 11: Effect of changing tardiness cost coefficient on total cost for 

different rescheduling policies at long middle disruption and 10 job problem. 

 
Figure 12: Effect of changing WIP holding cost coefficient on total cost for 

different rescheduling policies at long middle disruption and 10 job problem. 
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Figure 13: Effect of changing expediting cost coefficient on total cost for 

different rescheduling policies at long middle disruption and 10 job problem. 
4. CONCLUSIONS 

 This study considered the rescheduling problem for a single machine with 

unexpected disruptions. The effect of different disruption parameters such as the 

time of disruption occurrence, the disruption duration, and the number of disruption 

occurrences was considered. The main concern of this study is to compare the 

performance of different rescheduling policies under different levels of disruptions’ 

parameters to optimize a certain objective of interest. The results of our study 

showed that: 

1) When the objective is to minimize the total tardiness: 

• If the machine is prone to short disruptions, from 2% to 4% of TWK, the 

event-driven policy will be the superior to other policies for the early and 

middle disruptions regardless of jobs’ processing time. 

• If machine is prone to long disruptions, from 7% to 14% of total work 

content (TWK), the periodic policy will be superior to the other policies for 

early and middle disruptions regardless of the jobs’ processing time. 

• If disruptions occur late in schedule planning period, for instance, after the 

completion of 65% of initial schedule makespan, keeping the initial 

schedule this will always result in minimum total tardiness. 

2) When the objective is to minimize total cost: 
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 • If the ratio of the scheduling cost to the tardiness penalty cost is more than 

or equal to 25, keeping the initial schedule will result in the minimum total 

cost.  

• If the ratio of the scheduling cost to tardiness penalty cost is less than 25, 

the event-driven policy will be superior to other policies for short early and 

middle disruptions. Otherwise, the periodic policy with moderate 

rescheduling frequency will be superior. 

3) As due dates become more tight, the improvement in total tardiness due to 

rescheduling decreases. So, event-driven policy will result in performance 

improvement in terms of total tardiness with much lower cost than the periodic 

rescheduling for jobs with tight due dates, whose tightness measure  is 

greater than 0.7 . 

4) Total cost is much more sensitive to changes in tardiness cost coefficient 

compared to other cost coefficients. Therefore, rescheduling becomes more 

efficient as the tardiness cost coefficient increases with respect to 

scheduling/rescheduling cost. 
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