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ABSTRACT 

In this paper, a fuzzy economic order quantity (EOQ) model with 

shortages under fully backlogging and constant demand is 

formulated and solved. Here the model is solved by fuzzy signomial 

geometric programming (FSGP) technique. Fuzzy signomial 

geometric programming (FSGP) technique provides a powerful 

technique for solving many non-linear problems. Here we have 

proposed a new idea that is fuzzy modified signomial geometric 

programming (FMSGP) and some necessary theorems have been 

derived. Finally, these are illustrated by some numerical examples 

and applications.  

Keywords: EOQ model, Nearest Interval Approximation (NIA), Fuzzy 

number, Signomial Geometric Programming. 
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 1. INTRODUCTION 

 An inventory management deals with the decision that minimizes total 

averages cost or maximizes total average profit. In an ordinary inventory model are 

considered all parameters like shortage cost, carrying cost etc. as a fixed, but in a 

real life situation there some small fluctuations. Therefore, consideration of fuzzy 

number is more realistic and interesting.  

 The study of inventory model where demand rates vary with time is the last 

decades. Datta and Pal investigated an inventory system with power demand pattern 

and deterioration. Park and Wang studied shortages and partial backlogging of 

items. Friedman (1978) presented continuous time inventory model with time varying 

demand.  

 Ritchie (1984) studied an inventory model with linear increasing demand. 

Goswami and Chaudhuri (1991) discussed an inventory model with shortages. Gen 

et. al. (1997) considered classical inventory model with triangular fuzzy number. Yao 

and Lee (1998) considered an economic production quantity model in fuzzy sense. 

De, Kundu and Goswami (2003) presented an economic production quantity 

inventory model involving fuzzy demand rate.  

 Syde and Aziz (2007) applied sign distance method to fuzzy inventory model 

without shortage. D.Datta and Pravin Kumar published several paper of fuzzy 

inventory with or without shortage. Islam, Roy (2006) presented a fuzzy EPQ model 

with flexibility and reliability consideration and demand depended unit production 

cost under a space constraint.  

 A solution method of posynomial geometric programming with interval 

exponents and coefficients was developed by Liu (2008). Kotba. M. Kotb, Halla. 

Fergancy (2011) presented Multi-item EOQ model with both demand-depended unit 

cost and varying lead time via geometric programming. 

 Jana, Das and Maiti (2014) presented multi-item partial backlogging inventory 

models over random planning horizon in random fuzzy environment. Samir Dey and 

Tapan Kumar Roy (2015) presented optimum shape design of structural model with 

imprecise coefficient by parametric geometric programming. 
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  A signomial optimization problem often provides much more accurate 

mathematical representation of real-world nonlinear optimization problems. Initially 

Passy and Wilde (1967), and Blau and Wilde (1969) generalized some of the 

prototype concepts and theorems in order to treat signomial programs (SP).  

 In other work that general type of signomial programming (SP) has been done 

by Charnes et. al. (1988), who proposed methods for approximating signomial 

programs with prototype geometric programs. Islam and Roy (2005) proposed EOQ 

model with shortages under fully backlogging and constant demand is formulated 

and solved. Here the model is solved by fuzzy signomial geometric programming 

(FSGP) technique. Fuzzy signomial geometric programming (FSGP) technique 

provides a powerful technique for solving many non-linear problems.  

2. FUZZY NUMBER AND ITS NEAREST INTERVAL APPROXIMATION  

2.1. Fuzzy number 

 A real number  described as fuzzy subset on the real line  whose 

membership function  has the following characteristics with 

 

 

 =    

Where  is continuous and strictly increasing and 

 is continuous and strictly decreasing. 

α- level set: The α- level of a fuzzy number is defined as a crisp set where 

A(α) = [x: μA(x)≥α, xϵX] where αϵ [0,1]. A(α)  is a non-empty bounded closed interval 

contained in X and it can be denoted by Aα = [AL(α), AR(α)]. AL(α) and AR(α) are 

the lower and the upper bounds of the closed interval, respectively.  

2.2. Interval number 

 An interval number A is defined by an ordered pair of real numbers as follows 

A = [  where  and  are the left and the right 

bounds of interval A, respectively. The interval A, is also defined by center ( ) and 

half-width ( ) as follows 
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A = (  = {x:  where  =  is the center and  

=  is the half-width of A. 

2.3. Nearest interval approximation   

 Here we want to approximate a fuzzy number by a crisp model. Suppose  

and  are two fuzzy numbers with α-cuts are [AL(α), AR(α)] and [BL(α), BR(α)], 

respectively. Then the distance between  and  is 

                     d( ) = . 

 Given  We have to find a closed interval , which is 

closest  to  with respect to some metric. We can do it, since each interval is also a 

fuzzy number with constant α-cut for all α ∈ [0, 1]. Hence ( , .  Now 

we have to minimize 

                       d(  

 with respect to . 

 In order to minimize d( , it is sufficient to minimize the function 

D( ,  = ( )). The first partial derivatives are 

and   

Solving   and  we get  CL =  and CR = 

. 

Again, since   (D( , )) =2 > 0,   (D( , )) =2 > 0 and 

H( , ) =  (D( , )).  (D( , )) –  = 4 > 0. 

So, D( , ) i.e. d(  is global minimum. Therefore, the interval Cd(  = 

[ ] is the nearest interval approximation of fuzzy number  

with respect to the metric d. 
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 Let  = (a1, a2, a3) be a triangular fuzzy number. The α-cut interval of  is defined 

as  

Aα = [ , ] where  = a1+α(a2 - a1) and  = a3 - α(a3 – a2). By 

nearest interval approximation method the lower limit of the interval is  

CL =  =  = and the upper limit of the interval is 

CR =  =  = . 

 Therefore, the interval number corresponding   is [  In the 

centre and half –width form the interval number of  is defined as 

. 

2.4. Parametric Interval-valued function 

 Let [m, n] be an interval, where m > 0, n > 0. From analytical geometry point 

of view, any real number can be represented on a line. Similarly, we can express an 

interval by a function. The parametric interval-valued function for the interval [m, n] 

can be taken as g(s) =  for s ∈ [0, 1], which is a strictly monotone, continuous 

function and its inverse exits. Let  be the inverse of g(s), then 

s .  

3. DETERMINISTIC EOQ MODEL 

 In many real-life situations shortages occur in an EOQ model. When 

Shortages occurs, costs are incurred. The purpose of this section is to discuss the 

deterministic EOQ model in crisp environment. The notations to be used are: 

 Tac(Q,S):  Total average cost of the EOQ model. 

 Q: Order quantity. 

Maximum shortage that occurs under an ordering policy 

: Carrying cost per item per unit time. 

: Shortages cost per item per unit time.  

: Ordering cost per order. 
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  D: Demand rate per unit time. 

 

 
 
 
                          S 
 
                                             D 
                              
                                                        𝑄𝑄 − 𝑆𝑆 
 
                              0                           t 

Figure 2: EOQ model 

 Variables of the EOQ model are Q, S and  are constant parameters. 

Thus, 

Total carrying cost = , 

Total shortages cost = , 

So total cost =  

And total average cost Tac(Q,S) =  

                                    = ,                       . 

i.e., problem is  

          Minimize Tac(Q,S)                                                  (3.1) 

           subject to    Q, S  

 
4. FUZZY EOQ MODEL 

 In the inventory model we take the parameters , and  are fuzzy 

numbers.  

 Then from (3.1) we have 



 
 

 
[http://creativecommons.org/licenses/by/3.0/us/] 
Licensed under a Creative Commons Attribution 3.0 United States License 

 

1197 

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) 
http://www.ijmp.jor.br v. 8, n. 4, October - December 2017 
ISSN: 2236-269X 
DOI: 10.14807/ijmp.v8i4.640 
 

 
    Minimize  (Q,S) = + +                                                           (4.1) 

    subject to   Q, S  

 
5. UNCONSTRAINED FUZZY SIGNOMIAL GP PROBLEM 

 A problem without any restrictions is called unconstrained problem. I.e., a 

problem of the form  

     Minimize                                                                         (5.1) 

      Subject to      j  1, 2,……,m,   

 is called unconstrained problem.  

Primal problem:    

 A primal fuzzy signomial GP programming problem is of the form 

    Minimize                                                                           (5.2) 

    Subject to      j  1, 2,……,m. 

Where   

 Here  are real numbers and coefficient  are fuzzy triangular, as 

. 

 Using nearest interval approximation method, transformed all triangular fuzzy 

number into interval number i.e., [ . Then the fuzzy signomial geometric 

programming problem is of the following form 

Min                                                                                (5.3) 

Subject to      j  1, 2,……,m.  

 Where  denotes the interval counter parts i.e.,  

for all i. Using parametric interval-valued functional form, the problem () reduces to  

Min                                                          (5.4) 

Subject to      j  1, 2,……,m.  
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 This is a parametric geometric programming (PGP) problem.   

Dual signomial GP problem: 

 Dual GP problem of the given primal GP problem is 

 Maximize                                                                       (5.5) 

 Subject to  ,                    

,                      

 

Case I: n>m+1, (i.e. DD >0) so the DP presents a system of linear equations for the 

dual variables. Here the number of linear equations is less than the number of dual 

variables. More solutions of dual variable vector exist. In order to find an optimal 

solution of DP, we need to use some algorithmic methods. 

Case II: n< m+1, (i.e. DD <0) so the DP presents a system of linear equations for the 

dual variables. Here the number of linear equations is greater than the number of 

dual variables. In this case generally no solution vector exists for the dual variables. 

However, using Least Square (LS) or Min-Max (MM) method one can get an 

approximate solution for this system.  

Furthermore the primal-dual relation is  

.                                                              (5.6) 

Note: A Weak Duality theorem would say that  

 
For any primal-feasible x and dual-feasible  but this is not true of the pseudo-

dual fuzzy signomial GP problem. 

Corollary: When the value of  is 1, then a fuzzy signomial geometric programming 

(FSGP) problem transform to ordinary geometric programming problem.  

Theorem 1: When  is 1, then (x, s) ≥ (δ, s) (Primal- Dual Inequality). 
 
Proof 

 The expression for (x, s) can be written as  
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(x, s) = .  

Here the weights are  and positive terms are     

 , ……… ,   . 

Now applying A.M.-.G.M inequality, we get  

 

 ( ) 

 Or                                  [  

Or         

Or          

                        =  

i.e.,      (x, s) ≥ (δ,s) .  

Ex. 1: Minimize    (Q,S) = + +  

           subject to      Q, S  

    With input values 

 
Table-1 (Input data) 

   

D 
(16, 20, 24) (40, 50, 60) (40, 50, 60) 10 

 
Using nearest approximation method 

 

 

Then the problem is 
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          Min. Tac(Q,S,s) + +  

            Sub.    Q, S  

i.e.,   Min. Tac(Q,S,s) +  

            Sub.    Q, S  

 

This is primal problem and corresponding dual problem is 

 

Subject to 

 

 

 

Solving above equations, we have 

,  ,  

,  

i.e.,                 (5.7) 

Taking log on both side of (5.7) and then partially differentiating with respect 

to  and using the conditions of finding optimal solution we get this equation 

 

 

 

From primal-dual relation 
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Solving above relations with difference values of weight, we get the list of 

values in table-2 

Table -2: optimal solution 
 Optimal values objectives 
s 1 s Optimal dual variables Optimal primal 

variables   

0.1 0.9 ,     
,                         

 

 1.905                 

 
 

87.464 87.464 

0.3 0.7 ,     
,                         

 

 
 

 

92.929 92.929 

0.5 0.5 ,     
,                         

 

 
 

 

98.736 98.736 

0.7 0.3 ,     
,                         

 

 
 

 

104.906 104.906 

0.9 0.1 ,     
,                         

 

 
 

111.462 111.462 

 
6. FUZZY MODIFIED SIGNOMIAL GEOMETRIC PROGRAMMING PROBLEM 

(FMSGP) 

6.1. Primal problem: 

 A primal modified signomial GP programming problem is of the form 

   Minimize                                                                                                   (6.1) 

   Subject to       j  1, 2,……,m. 

 Where   

 Using nearest interval approximation method, transformed all triangular fuzzy 

number into interval number i.e., [ . Then the fuzzy signomial geometric 

programming problem is of the following form 

      Minimize                                                                           

(6.2) 
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       Subject to    j  1, 2,……,m. 

Where   

 Where  denotes the interval counter parts i.e., 

 for all i. Using parametric interval-valued functional 

form, the problem () reduces to  

      Minimize                                                                        

(6.3) 

      Subject to      j  1, 2,……,m.  

Where   

  This is a parametric geometric programming (PGP) problem.  

Dual signomial GP problem: 

 Dual GP problem of the given primal GP problem is 

 Maximize                                                           (6.4) 

 Subject to  ,                    

,                      

 

Case I: nk nm+n, (i.e. DD>0) So the DP presents a system of linear equations for 

the dual variables. Here the number of linear equations is less than the number of 

dual variables. More solutions of dual variable vector exist. In order to find an optimal 

solution of DP, we need to use some algorithmic methods. 

Case II: nk<nm+n, (i.e. DD <0) So the DP presents a system of linear equations for 

the dual variables. Here the number of linear equations is greater than the number of 

dual variables. In this case generally no solution vector exists for the dual variables. 

However, using Least Square (LS) or Min-Max (MM) method one can get an 

approximate solution for this system.  

 Furthermore the primal-dual relation is 
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 ,    

s       (6.5) 

Note 2: A Weak Duality theorem would say that  

 

 For any primal-feasible x and dual-feasible  but this is not true of the pseudo-

dual fuzzy modified signomial GP problem. 

Corollary 2: When the values of  is 1, then a fuzzy modified signomial geometric 

programming (FMSGP) problem transform to ordinary modified geometric 

programming problem. 

Theorem 2: When  is 1, then ( ) ≥ n (Primal- Dual Inequality). 

Proof. 

 The expression for ( )  can be written as   

( ) = . 

Here the weights are  and positive terms are    

 

 , ……… ,   . 

 Now applying A.M.-.G.M inequality, we get  

 

 

Or       

Or                  [  
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 Or     

 

                    =  

i.e.,    ( ) ≥ n .         

Ex.2:  Minimize    ( , ) =  

          subject to   ,  

 With input values 

Table: 3 (Input data) 

 
 Using nearest approximation method 

 

 

 

 

 

 Then the problem is 

Min. Tac(Q,S,s) + + + + 

 

  Sub.    ,  

i.e., 

Min .Tac(Q,S,s) + 

 

i 
   

 

i=1 (16, 20, 24) (40, 50, 60) (40, 50, 60) 10 
i=2 (6, 10, 14) (105, 125, 145) (21, 25, 29) 15 
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   Sub.    ,  

 This is primal problem and corresponding dual problem is 

. 

 Subject to 

 

 

 

 

 

 

 Solving above equations, we have 

,  , 

 

 

 And 

 , , 

 

 

i.e.,  

                                    (6.6) 

 Taking log on both side of (6.6) and then partially differentiating with respect 

to  and respectively and using the conditions of finding optimal solution we get; 
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 And   

 

 

 

 From primal-dual relation 

  

   

  

    

  

   

         

 

 Solving above relations with difference values of weight we get the list of 

values in table-4. 

 

 

 

 

 



 
 

 
[http://creativecommons.org/licenses/by/3.0/us/] 
Licensed under a Creative Commons Attribution 3.0 United States License 

 

1207 

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) 
http://www.ijmp.jor.br v. 8, n. 4, October - December 2017 
ISSN: 2236-269X 
DOI: 10.14807/ijmp.v8i4.640 
 

 Table 4: optimal solution 
 Optimal values 

objectives 
      s 1 s Optimal dual variables Optimal primal 

variables   

 
 0.1 

 
 0.9 

,     
,                         

 
,     

,                         
 

 1.971,                 

 
 0.774,                 

 

 
 8187.095 

 
 195.347 

 
 0.3 

 
 0.7 

,     
,                         

 
,     

,                         
 

 2.008,                 

 
 0.795,                 

 

 
 9205.062 

 
 206.989 

 
 0.5 

 
 0.5 

,     
,                         

 
,     

,                         
 

 2.045,                 

 
 0.816,                 

 

 
 
10349.600 

 
 219.326 

 
 0.7 

 
0.3 

,     
,                         

 
,     

,                         
 

 2.083,                 

 
 0.838,                 

 

 
 
11636.450 

 
232.372 

 
 0.9 

 
 0.1 

,     
,                         

 
,     

,                          
 

 2.122,                 

 
 0.861,                 

 

 
 
13083.300 

 
246.191 

 
7. CONCLUSION  

 In this paper, a fuzzy EOQ model with shortages under fully backlogging and 

constant demand is formulated and solved. Here the model is solved by fuzzy 

signomial geometric programming (FSGP) technique. For fuzzy coefficient we used 

only triangular fuzzy number (TrFN). In future other types of fuzzy numbers would be 

used. The methodology proposed in this paper may also be applicable to other EOQ 

models.  
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  Our approach provide here a simple EOQ model, but in the future it should be 

used many complex EOQ models. For future research of uncertainty in economic 

order quantity (EOQ) model, by using different type of fuzzy numbers such as 

pentagonal, hexagonal fuzzy numbers of generalized fuzzy numbers be analytically 

more challenging and interesting. Inflation plays an important role in present day-to-

day life, but we have neglected it. Therefore, consideration of inflation problem would 

be more realistic.    
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