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ABSTRACT 

The information provided by accurate forecasts of solar energy time 

series are considered essential for performing an appropriate 

prediction of the electrical power that will be available in an electric 

system, as pointed out in Zhou et al. (2011). However, since the 

underlying data are highly non-stationary, it follows that to produce 

their accurate predictions is a very difficult assignment. In order to 

accomplish it, this paper proposes an iterative Combination of Wavelet 

Artificial Neural Networks (CWANN) which is aimed to produce short-

term solar radiation time series forecasting. Basically, the CWANN 

method can be split into three stages: at first one, a decomposition of 

level p, defined in terms of a wavelet basis, of a given solar radiation 

time series is performed, generating  Wavelet Components (WC); 

at second one, these  WCs are individually modeled by the k 

different ANNs, where , and the 5 best forecasts of each WC are 

combined by means of another ANN,  

 



 

 
[http://creativecommons.org/licenses/by/3.0/us/] 
Licensed under a Creative Commons Attribution 3.0 United States License 

 272 

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) 
http://www.ijmp.jor.br            v. 7, n. 1, January - March 2016 
ISSN: 2236-269X 
DOI: 10.14807/ijmp.v7i1.393 

producing the combined forecasts of WC; and, at third one, the combined forecasts 

WC are simply added, generating the forecasts of the underlying solar radiation data. 

An iterative algorithm is proposed for iteratively searching for the optimal values for 

the CWANN parameters, as we will see. In order to evaluate it, ten real solar 

radiation time series of Brazilian system were modeled here. In all statistical results, 

the CWANN method has achieved remarkable greater forecasting performances 

when compared with a traditional ANN (described in Section 2.1). 

Keywords: solar radiation time series, wavelet decomposition, artificial neural 

networks, forecasts. 

1. INTRODUCTION 

 The conversion of solar energy into electrical energy is one of most promising 

alternatives to generate electricity from clean and renewable way. It can be done 

through large generating plants connected to a transmission system or by means of 

small generation units for the isolated systems. The Sun provides annually to the 

Earth's atmosphere, approximately, 1.5x1018 kWh of energy, but only a fraction of 

this energy reaches the Earth's surface, due to the reflection and absorption of 

sunlight by the Earth's atmosphere (SINGH; CHAUDHARY; THAKUR, 2011).  

 One problem of renewable energy, for instance, wind and solar energies is the 

fact that the production of these sources dependents on meteorological factors. 

Particularly, in the case of solar energy, the alternation of day and night, the seasons, 

the passage of clouds and rainy periods cause great variability and discontinuities in 

the production of electricity. In addition, it is needed to have capable devices of 

storing energy during the day in order to make it available during the night such as 

battery banks or salt tanks, as pointed out by Wittmann et al. (2008).  

Thus, the safe economic integration of alternative sources in the operation of the 

electric system depends on accurate predictions of energy production so that 

operators may make decisions about the maintenance and dispatch of generating 

units that feed the system as a whole. 

 Among the techniques employed in solar radiation forecasting, it can be 

pointed out that the Auto-Regressive Integrated with Moving Average (ARIMA) 

(PERDOMO et al., 2010), the Artificial Neural Networks (ANN) (DENG et al., 2010; 

YANLING et al., 2012; YONA; SENJYU, 2009; ZERVAS, et al., 2008; ZHANG; 
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BEHERA, 2012), the Kalman Filter (CHAABENE; AMMAR, 2008) and the different 

ways of combining wavelet orthonormal basis and ANN (CAO et al., 2009; ZHOU et 

al., 2011; TEIXEIRA JR., et al., 2015).  

 The wavelet methods combined with several types of predictive models (as 

the ANNs) have been proposed, achieving remarkable accuracy gains. Basically, the 

wavelet methods consist of auxiliary pre-processing procedures of the data in 

question, which can be accomplished generally in two ways: by decomposition (as in 

TEIXEIRA JR., et al., 2013) or by noise shrinkage (as in MALLAT, 2009) of the time 

series to be forecasted.  

 Particularly, several studies show the predictive gains achieved by combining 

wavelet decomposition and ANN approaches, as in: Krishna et al. (2011), who 

applied to forecast river flows; Liu et al. (2010), Catalão et al. (2011), who modeled 

wind time series; Teixeira Junior et al. (2015), who worked with time series of solar 

radiation; and Minu et al. (2010), who studied time series of number of terrorist 

attacks in the world.  

 Due to the complexity to predict the solar radiation time series, two aspects 

should be accounted for. Firstly, although it is well-known that ANNs integrated with 

wavelet decompositions, referred to here as wavelet ANN, commonly lead to 

remarkable predictive gains, their best configuration are obtained in a manual way - 

and not iteratively by means of a computational algorithm.  

 Secondly, the adoption of individual forecasting methods (as the ANNs and 

wavelet ANNs) in forecasting processes underestimates the structural risk exhibited 

mainly by non-stationary time series (as is the case of solar energy time series). 

However, as pointed out by Firmino et al. (2014), this trouble is accomplished when 

is performed a combination of unbiased forecasts provided by individual forecasting 

methods.   

 This paper put forwards an interactive Combination of Wavelet Artificial Neural 

Networks (CWANN) which is aimed to produce short-term solar radiation forecasting. 

Summarily, the CWANN method can be split into three steps: in Step 1, a 

decomposition of level r, defined in terms of a wavelet basis, of a given solar 

radiation time series is performed, generating  Wavelet Components (WC); 

secondly, these  WCs are individually modeled by the k different ANNs, where 



 

 
[http://creativecommons.org/licenses/by/3.0/us/] 
Licensed under a Creative Commons Attribution 3.0 United States License 

 274 

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) 
http://www.ijmp.jor.br            v. 7, n. 1, January - March 2016 
ISSN: 2236-269X 
DOI: 10.14807/ijmp.v7i1.393 

, the 5 best forecasts are combined by means of other ANNs, and the best 

combined one is selected; and, thirdly, all the combined forecasts of the WCs are 

added, producing the solar radiation time series forecast.  

 For this, an iterative algorithm is used to iteratively find the optimal CWANN 

parameters, as it will be seen. For illustrating it in a real case, ten time series of 

global horizontal solar radiation of Brazilian system were modeled here. All statistical 

results have shown that CWANN method has achieved better accuracy 

performances when compared with the ANN and wavelet ANN described, 

respectively, in Sections 2.1 and 2.2, and used in Teixeira Jr. et al (2015). 

 So, this paper this is divided into five sections. In Sections 2, there are 

introduced theoretical aspects about the wavelet decomposition and ANNs. Section 3 

describes the CWANN method. The main statistical results are exposed and 

commented upon in Section 4. In Section 5, the paper is closed.  

2. REVIEW OF LITERATURE 

 The purpose of this section is to present a brief review of some basic concepts 

which are needed for defining the CWANN method, described in Section 3. It starts, 

in Section 2.1, by describing the wavelet decomposition of level r, which is the 

algorithm adopted in initial step of the CWANN method. This is followed by the 

description of the (feed-forward multi-layer perceptron) Artificial Neural Networks 

(ANNs), in Section 2.2, that are used to model individually each WC (produced by a 

wavelet decomposition of level r) and to perform the proposed linear combination of 

forecasts, as we will see in Section 3. 

2.1. Wavelet Decomposition of Level r 

 Let  denote a collection of all scalar-valued complex infinite sequences with 

finite energy (that is, ), equipped with an usual inner 

product  (as in Kubrusly, 2012). According to Kubrusly and Levan (2006), any 

subset in  is an orthonormal basis of  if holds the following axioms: (i) 

orthogonality: , whenever , where ; (ii) normality: , 

where ; (iii) completeness: , if . Thus, based on Kubrusly 

(2012), if  is an orthonormal basis , then any  of the sequence  

in  can orthogonally expanded in terms of , as follows: 
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  (1)

where  denotes the usual inner product of  and . An element 

 is called an orthonormal wavelet function if, and only if, the functions 

, where , defined by  

  (2)

- called an orthonormal wavelet functions, form an orthonormal basis for . 

Accordingly, any  of the sequence  in  admits the expansion in (3). 

  (3)

 Now, for each , the projection of  onto  is given by 

. According to Levan and Kubrusly (2003), this can be considered 

as a detail variation of  at scale  and time-shift . In effect, for each , the 

projection  of  at scale  is defined by the following partial sum  

  (4)

 This, in turn, can be regarded as a WC of detail of  at scale at scale  (as 

in Mallat, 2009). Therefore, any  is the sum of all its WC of detail over 

all scales. 

On the other hand, an element  is called scaling function if, and only 

if, the functions , where , defined by                                                         

  (5)

are such that , whenever  e , and 

, if otherwise. For each , the projection  of  is given 

by the following partial sum 

  (6)
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 This can be referred to as the WC of approximation of  at scale at scale  

(MALLAT, 2009). Based on Levan and Kubrusly (2006), an  in the sequence 

 can be orthogonally expanded as in (7). 

  (7)

The expansion in (7) in usually referred to as “wavelet decomposition” of . 

According to Teixeira Jr et al. (2015), any finite time series, denoted by 

, can be decomposed as in (8). 

  (8)

 The expansion in (8) is usually regarded as a wavelet decomposition of level  

of the state . 

2.2. Artificial Neural Networks 

 The Artificial Neural Networks (or simply ANNs) are very flexible computing 

frameworks for modeling and forecasting a broad range of stochastic time series, 

because they just requires they exhibit either linear and non-linear auto-dependence 

structures. As is the case of most statistical linear models, the stationarity property 

are not required by ANN approaches (as in HAMILTON, 1994).  

 Another important aspect is that the ANNs are universal approximators of 

compact (i.e., closed and bounded) support functions, as pointed out by Cybenko 

(1989). Thus, since a time series  that depends on its own past may 

be seen as points a compact support, it follows that the ANNs are capable to 

approximate (for modeling or forecasting) it with a high degree of accuracy. 

According to Zhang (2003), their predictive power comes from the parallel processing 

of the information from the data. In addition, the ANN models are largely determined 

by the stochastic characteristics inherent in the time series.  

 In perspective, the feed-forward multi-layer perceptron ANNs (referred to from 

now on as ANNs) are the most widely used prediction model for time series 

forecasting. Particularly, a single hidden layer ANN is characterized by a network 

composed by three layers of simple processing units numerically connected by 

acyclic links. The relationship between the output at instant t, denoted by , and the 
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p-lagged inputs, represented by the sequence , has got the 

following mathematical representation:  

  (9)

where  and  are the (single hidden 

layer) ANN parameters, which are often called the connection weights;  is the 

number of input nodes;  is the number of hidden nodes;  is the approximation error 

at time t; and  is here a logistic function, although it would be possible to adopt 

another transfer function (please, see Haykin (2001) for more details). The logistic 

function is widely used as the hidden layer transfer function in forecasting processes 

and its mathematical representation is given by 

  (10)

where  and  is the exponential function with Euler’s 

basis (as in HAYKIN, 2001). Due to  is a non-linear transfer function, the ANN 

model, in (9), in fact performs a non-linear mapping from the past observations 

 to the future state . Equivalently, the model in (9) can be 

rewritten, as follows:   

  (11)

where  denotes a vector of all ANN parameters and  is the 

model determined by the network structure and connection weights. Indeed, the 

neural network is equivalent to a non-linear auto-regressive model.  

 In practice,  is an unknown vector of ANN parameters and hence needs to 

be adjusted. So, in order to find the optimal solution , accounting for some criteria, 

for the vector of ANN parameter , some optimization algorithm must be employed. 

Although there are several methodologies in specialized literature, maybe the 

Levenberg-Marquardt’s algorithm (as in ADAMOWSKI; KARAPATAKI, 2010) might 

be considered most used for this assignment. The minimization in-sample squared 

error mean (i.e., ) is usually used as numerical criteria. Thus, it is 
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desired that the solution  of this optimization problem is the argument that 

minimizes the . Once obtained , it has 

 (12)

where  is the final ANN output at instant t which consists of 

forecast, denoted by , of the state , and  is its forecasting error. 

3. PROPOSED METHODOLOGY  

 Let  denotes a solar radiation time series that exhibits auto-

dependence structure, and assume it is required to produce its out-of-sample 

forecasts. With this purpose, the proposed iterative methodology, referred to as a 

Combination of Wavelet Artificial Neural Networks (or simply CWANN), can be 

carried out according to the following four steps. 

 Step 1: a wavelet decomposition of level  (as in Section 2.1), defined in 

terms of an orthogonal wavelet basis (i.e., the Haar, Daubechies, Minimum-

Bandwidth, Fejér-Korovkin, Battle-Lemarie, and Symlet families (as in 

MALLAT, 2009; DAUBECHIES, 1992; MORRIS; PERAVALI, 1999), of 

 is performed, producing 1 WC of approximation at level , 

denoted by  , where , and  WCs of detail at levels 

, , …, , denoted by  , respectively, 

where . 

 Step 2: Each WC from Step 1 is individually modeled by k different ANNs 

(as in Section 2.2), where . So, here is generated the following 

sequences of forecasts: , , …,  , 

where  and  represents the degree of freedoms lost till this step. 

Note that  and , where , are, 

respectively, the forecasts of the state , produced by the ith ANN, and 

of the state , generated by the ith ANN. In this way, if it is accounted for 

a wavelet de decomposition of level  of , then  

distinct ANNs are needed for separately modeling them.  
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 Step 3: The 5 best forecasts of each WC in Step 2 are combined by means 

of an ANN, generically denoted by , in order to produce its combined 

forecasts. Mathematically talking, it has: 

= , and 

=  

where  and  are, respectively, the combined forecasts of  

and . Indeed, the ANNs (.) and  provide the predictions 

 and , respectively. Importantly, the ANNs used in Steps 2 and 

3 are the same ones described in Section 2.2.  

 Step 4: The combined forecasts of each WC in Step 3 are simply added, 

generating the out-of-sample combined forecasts of solar radiation time 

series, denoted by , where  is the degrees of 

freedom lost until Step 3. That is: 

  . 

The steps 1, 2, 3 and 4 are repeated for all wavelet orthogonal basis, and 

for decomposition level  from 1 to 3. The best forecast is selected. 

 In this paper, the four steps above are together carried out in an iterative way 

by means of a computational algorithm (schematized in Figure 1) that tests several 

values for the CWANN parameters exhibit in Steps 1, 2 and 3. As objective function, 

the minimization of the in-sample (or training) MSE of a given solar radiation time 

series (i.e., ) is adopted. More specifically, by CWANN 

parameters here, it means: the level of decomposition wavelet  and the wavelet 

orthogonal basis, in Step 1; and the window length  and the number  of artificial 

neurons in hidden layer of each ANN, in Steps 2 and 3.  

 Notice that, in Steps 2 and 3, other ANN parameters (as transfer functions and 

training algorithm) could also be used as “variables” to be optimized. However, in 

order to avoid increasingly large periods of training, only the window length and the 

number of nodes in the hidden layer were chosen for working out as variables to be 

numerically adjusted.  
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 Some aspects were accounted for computational algorithm and deserve then 

to be commented upon. Firstly, since it can be performed an enormous number of 

different setups between a wavelet level of decomposition  and a wavelet 

orthonormal basis, and there is no major analytic role in determining what is the best, 

it follows that an enormous number of empirical tests are needed for obtaining so.  

 Secondly, concerning the ANN parameter , there exists no systematic rule in 

deciding its optimal value such that all values belonging to a determined range 

(defined by the decision maker) are numerically tested. Thirdly, to choosing an 

appropriate number of hidden nodes, another important task of ANN modeling of a 

time series is the selection of the number of lagged observations, , the dimension of 

the input vector.  

 This is perhaps the most important parameter to be estimated in an ANN 

model because it plays a major role in determining the auto-dependence structure of 

the time series. However, there is also no theory that can be used to guide 

analytically the selection of an optimal value of . Fourthly, due to the overfitting 

effect typically found in neural network modeling, a validation sample was used for 

choosing the best ANNs. By an overfitted ANN, it means an ANN that has a good fit 

to the in-sample data, but has poor generalization ability in the out-of-sample period. 

 Figure 1(a) shows the wavelet decomposition flowchart, including the loops to 

search for the best decomposition parameters (filter and level of decomposition) and 

the call to the ANN routine which makes the CWs forecast.  

 The variables used are SR (Solar Radiation time series); ws and we (window 

start and window end, limits for the window size range); ns and ne (neurons start and 

neurons end, the range for the number of neurons in the hidden layer); is and ie 

(maximum number of iterations start and end); numFilters is the total number of filters 

(orthogonal wavelet basis) tested; SRForecast[f, r] is a matrix with all tested 

forecasts, to choose the best forecast; f and r are indexes to indicate filter and the 

level of decomposition.  

 Apr is an approximation CW and Det is a detail CW, and ANN is a calling to 

the ANN forecasting procedure described in Figure 3 (b). To this figure, the variables 

w, n and i are also used, as indices of windows, neurons and iterations ranges; 

series, as the CW to be modeled; fcTr, fcVal and fcTst as the Training, Validation and 
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Test sample forecasts; cbTr, cbVal, cbTst as the combined Training, Validation and 

Test sample forecasts; mlp is the Multilayer Perceptron neural network calling 

procedure and RMSE is the routine that calculates the root mean square error, used 

as the evaluation parameter for the forecast accuracy.  

 Basically, the procedure (a) makes wavelet decompositions for all possible 

combinations of the available filters and decomposition levels, using two nested 

loops. For each CW it calls the ANN procedure (b). This ANN procedure test all 

possible combinations of window size, neurons on the hidden layer and number of 

iterations, making ANN forecasts. Then it selects the 5 best ones and combines them 

using other two nested loops, and selects the best combination. This combination is 

then returned as the CW forecast. All CW forecasts are added to form the Solar 

Radiation forecast for one filter and one decomposition level. At the end, the best 

Solar Radiation forecast is selected as the final forecast. 

4. NUMERICAL EXPERIMENTS 

 In order to compare and numerically illustrate the CWANN, the same 

numerical experiments carried out in Teixeira Jr et al. (2015) were performed here. 

For this, ten (real) solar radiation time series sampled in ten cities of Brazil and 

different years were modelled; all of them with hourly data in a period of one year 

(i.e., 1th January to 31th December), resulting 8760 observations. Their graphical 

representations of the daily profiles can be seen in Figure 2, and the mean and 

standard deviation statistics, in Table 1. The solid black line in Figure 2 represents 

the hourly mean of solar radiation. 
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Figure 1: Flowchart of the CWANN method.  
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Figure 2: Daily profiles of solar radiation time series. 

Table 1: Mean and standard deviation of the global horizontal solar radiation 
Meteorological station Mean W/m2 Standard Deviation W/m2 

Brasília 2011 219,20 304,15 
Caicó 2003 253,82 339,08 

Campo Grande 2007 213,34 299,37 
Cuiabá 2010 204,51 290,98 

Florianópolis 2011  171,77 270,09 
Joinville 2011 128,72 210,37 

Natal 2011 241,13 334,09 
Palmas 2010 220,46 304,90 

Petrolina 2010 220,41 302,75 
São Martinho 2010 196,04 296,06 

4.1. Proposed Computational Algorithm 

 The computational algorithm described in Section 3 was implemented in R 

software (R CORE TEAM, 2015) and accounted for the following packages: 

Waveslim package (WHITCHER, 2015), used to perform the wavelet decomposition 

method (described in Step 1, in Section 3, and schematized on left side in Figure 1); 

and the RSNNS package (BERGMEIR; BENITEZ, 2012), employed to make the 

modelling by ANN models (required in Steps 2 and 3, in Section 3, and schematized 

on right side in Figure 1).  
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 In one hand, the orthonormal basis used in the wavelet decompositions were 

those available in Waveslim package, i.e.: Haar (db1); Daubechies (db2, db4 and 

db8); Minimum Bandwidth (mb4, mb8, mb16 and mb24); Fejér-Korovkin (fk4, fk6, fk8, 

fk14 and fk22); Least Asymmetric or Symlet (la8, la16 and la20); and Battle-Lemarie 

(bl14 and bl20). The wavelet decomposition levels tested were 1, 2 and 3 (i.e., 

).  

 On the other hand, all the ANNs used in Steps 2 and 3 were composed with 

one hidden layer, hyperbolic tangent activation function in the hidden layer, and 

linear activation function in the output layer. Regarding the learning algorithm, the 

scaled gradient conjugate (SGC), which simulates the Levenberg-Marquardt 

algorithm, was used.  

 In all simulations, the input patterns of all ANNs were transformed into a point 

belonging to the bounded and closed interval [-1,1]. The implemented computational 

algorithm selects the optimum values to the following parameters: wavelet 

orthonormal basis, wavelet decomposition level, RNA window size, number of 

neurons in the hidden layer and maximum number of iterations for each CW and for 

the combined forecast. 

 Importantly, the time series modelling followed the same approach in Teixeira 

et al. (2015) in order to guarantee a proper comparison of results. Thereby, the 

training sample was composed of 7008 observations, the next 876 observations were 

the validation sample, and the 876 remaining data were the test sample.  

4.2. Modeling For The 10 Time Series 

 Table 2 exhibits the Root Mean Square Deviation (RMSE) and the coefficient 

of determination R2 (as in HAMILTON, 1994) in the test sampling, as well as the best 

configuration, of the naive predictor (as in HAMILTON, 1994) , a conventional ANN 

(as in Section 2.1), the Wavelet ANN proposed by Teixeira Jr et al. (2015) and the 

CWANN method (proposed method). 
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Table 2: Wavelet basis, types of ANN, RMSE and R2 on the test sample for each 
time series´ modeling, by Teixeira Junior et al. (2015) (*) and by the CWANN method 

(**) 

Local Result 
Wavelet 

basis 
Window 
length 

Neurons in 
the hidden 

layer 

Maximum 
iterations 
number  

RMSE 
Wm-2 

R2 

Brasília 

* Naive predictor 143.34 0.7848 
* without 12 8  107.88 0.8707 
* db32 15 8  91.29 0.9074 

** db8 10 to 15 18 to 25 27 to 30 17.05 0.9968 

 
Caicó 

* Naive predictor 134.68 0.8611 
* without 15 19  66.58 0.9648 
* db20 15 8  37.61 0.9888 

** db8 10 to 15 18 to 25 27 to 30 11.79 0.9989 

 
Campo 
Grande 

* Naive predictor 154.21 0.7898 
* without 15 10  120.07 0.865 
* db20 12 8  76.06 0.9458 

** fk8 10 to 16 18 to 25 27 to 30 19.89 0.9964 

 
Cuiabá 

* Naive predictor 144.84 0.8076 
* without 10 19  106.28 0.8908 
* db38 10 12  26.14 0.9934 

** la20 10 to 25 15 to 25 25 to 30 16.49 0.9974 

 
Florianópolis 

* Naive predictor 143.29 0.8302 
* without 10 10  109.72 0.8958 
* db40 8 15  50.12 0.9783 

** la16 10 to 15 18 to 25 27 to 30 19.22 0.9969 

 
Joinville 

* Naive predictor 111.58 0.8089 
* without 11 5  92.24 0.8625 
* db32 12 10  84.34 0.885 

** la16 10 to 16 18 to 25 27 to 30 15.44 0.9963 

 
Natal 

* Naive predictor 133.36 0.8738 
* without 15 5  57.32 0.9759 
* db20 15 13  75.96 0.9577 

** bl20 10 to 16 18 to 25 27 to 30 8,68 0.9995 

 
Palmas 

* Naive predictor 138.54 0.7780 
* without 15 10  101.77 0.8727 
* db40 10 13  60.3 0.9553 

** db8 10 to 15 18 to 25 27 to 30 16.72 0.9966 

 
Petrolina 

* Naive predictor 121.63 0.8543 
* without 15 9  75.11 0.9423 
* db15 9 20  82.51 0.9303 

** bl14 10 to 16 18 to 25 27 to 30 11.87 0.9986 

São 
Martinho 

* Naive predictor 140.37 0.8694 
* without 15 20  98.87 0.9329 
* db13 20 14  19.68 0.9973 

** la20 10 to 15 18 to 25 27 to 30 17.11 0.9982 

5. CONCLUSIONS 

 In this paper, an iterative Combination of Wavelet Artificial Neural Networks 

(CWANN), detailed described in Section 3, has been put forward with the aim of 

producing out-of-sample one-step forecasts of solar radiation. An iterative algorithm 

also is proposed for iteratively searching for the optimal values for the CWANN 
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parameters, as it was shown. For evaluating it as well as compare it with other 

methods, 10 real solar radiation time series of Brazilian system were modeled here.  

 Regarding the adherence statistics RMSE and R2, Table 1 shows clearly that 

the CWANN predictions have achieved greater accuracy power than Naive predictor, 

ANN and the Wavelet ANN proposed by Teixeira Jr et al. (2015). Indeed, these 

results are an important empirical evidence that the optimal numerical adjustment of 

the non-linear combination of different ANN forecasts by using an ANN integrated 

with the wavelet decomposition may provide accuracy gains. In addition, the 

automatic search, not only avoid operational effort, but also contributes to accomplish 

best forecasts of solar radiation.  

 Finally, it points out that, even though the mathematical theory associated with 

the methods (i.e., wavelet decomposition and ANN) that compose the CWANN is 

relatively complex, they can be straightforwardly implemented in an operational way 

by using the software R as well as its packages mentioned in the text. 
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