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ABSTRACT 

Otto engine dynamics are similar in almost all common internal 

combustion engines. We can speak so about dynamics of engines: 

Lenoir, Otto, and Diesel. The dynamic presented model is simple and 

original. The first thing necessary in the calculation of Otto engine 

dynamics, is to determine the inertial mass reduced at the piston. 

One uses then the Lagrange equation. Kinetic energy conservation 

shows angular speed variation (from the shaft) with inertial masses. 

One uses and elastic constant of the crank shaft, k. Calculations 

should be made for an engine with a single cylinder. Finally it makes 

a dynamic analysis of the mechanism with discussion and 

conclusions. The ratio between the crank length r and the length of 

the connecting-rod l is noted with landa. When landa increases the 

mechanism dynamics is deteriorating. For a proper operation is 

necessary the reduction of the ratio landa, especially if we want to 

increase the engine speed. We can reduce the acceleration values by 

reducing the dimensions r and l. 

  

Keywords: Otto engine, Dynamics, Lagrange equation, Dynamic 

model, Shaft elastic constant.  
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1. INTRODUCTION 

 The dynamic study of mechanisms Otto engine type is most important to 

predict how that will work in real engines. 

Some Otto engine dynamic models were presented by: (AMORESANO, 2013; 

DAWSON, 2005; DE FALCO, 2013A-B; GUZZELLA, 2004; HEYWOOD, 1988; 

PETRESCU, 2005, 2009, 2012a-b, 2014a-c, 2015; RAMOS, 1989).  

 Almost a quarter of the planet's population works directly or indirectly for the 

construction of machines. Most specialists are involved in the development and 

production of road vehicles.  

 If Otto engine production would stop right now, they will still working until at 

least about 40-50 years to complete replacement of the existing fleet today. 

 Old gasoline engines carry us every day for nearly 150 years. “Old Otto 

engine” (and his brother, Diesel) is today: younger, more robust, more dynamic, more 

powerful, more economical, more independent, more reliable, quieter, cleaner, more 

compact, more sophisticated, more stylish, more secure, and more especially 

necessary and wanted. At the global level we can manage to remove annually about 

60,000 cars. But annually appear other million cars (see the table 1).  

Table 1. World cars produced 
year cars produced 

2011 59,929,016 

2010 58,264,852 

2009 47,772,598 

2008 52,726,117 

2007 53,201,346 

2006 49,918,578 

2005 46,862,978 

2004 44,554,268 

2003 41,968,666 

2002 41,358,394 

2001 39,825,888 

2000 41,215,653 

1999 39,759,847 
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 In full energy crisis since 1970 until today, production and sale of cars 

equipped with internal combustion heat engines has skyrocketed, from some millions 

yearly to over sixty millions yearly now, and the world fleet started from tens of 

millions reached today the billion. As long as we produce electricity and heat by 

burning fossil fuels is pointless to try to replace all thermal engines with electric 

motors, as loss of energy and pollution will be even larger. However, it is well to 

continuously improve the thermal engines, to reduce thus fuel consumption. Planet 

supports now about one billion motor vehicles in circulation.  

 Otto and diesel engines are today the best solution for the transport of our 

day-to-day work, together and with electric motors. 

 Even in these conditions internal combustion engines will be maintained in 

land vehicles (at least), for power, reliability and especially their dynamics.  

2. DETERMINING THE FIRST EQUATIONS 

 The first thing necessary in the calculation of Otto engine dynamics, is to 

determine the inertial mass reduced at the piston (1).  
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 Then it derives the reduced mass to the crank position angle (2).  
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 Lagrange equation is written in the form (3). 
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 Were used for piston the next kinematics parameters (4).  
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3. DYNAMIC EQUATIONS 

 The dynamic equation of motion of the piston, obtained by integrating the 

Lagrange equation (3), takes the form 5. 
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 Dynamic reduced velocity (6) and dynamic reduced acceleration (7) are 

obtained by derivation: 
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 Angular velocity 
* is obtained through kinetic energy conservation (8-12). 

2*2*

2

1
*

2

1
DDJJ                   (8) 



 

 
[http://creativecommons.org/licenses/by/3.0/us/] 
Licensed under a Creative Commons Attribution 3.0 United States License 

 42 

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) 
http://www.ijmp.jor.br            v. 7, n. 1, January - March 2016 
ISSN: 2236-269X 
DOI: 10.14807/ijmp.v7i1.381 

             









)sin1()sin1(

cos)(cos
222

22





mm

mmmD D
              (9) 

22
1

* 'smrmJJ tbA                (10)

 
22

1
* 'xmrmJJ tbAD       (11) 

)sin1(
30'

' 22
22

1

22
1*  








n

smrmJ

xmrmJ

tbA

tbA
            (12) 

 Dynamic velocity (13) and kinematics velocity (14) are written: 

*' xx                 (13) 
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 Dynamic acceleration (15) and kinematics acceleration (16) are written: 

2*''  xx                 (15) 
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4. NOTATIONS AND FIGURES 

 In the Figure 1 it presents the crank shaft.  

 The relation (17) determines the elastic constant of the crank shaft, k. 
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 For the masses one uses the notations (18); see the Figure 2. 

    the ratio between lengths of crank and rod; l

r

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 pm
  the mass of the piston, with piston bolt and segments; 

 bm  the mass of the rod; 
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Figure 1: Crank Shaft 
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 The parameters c1-c4 take the forms (19): 
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 The moment of inertia 1J  can be determined with the relation (20). 
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 The crank length, r, and the length of the connecting-rod, l, can be seen in the 

kinematics schema of an Otto mechanism (Figure 2).  
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Figure 2: Otto mechanism kinematics schema 

5. DYNAMIC ANALYSIS OF THE MECHANISM, DISCUSSION AND 

CONCLUSION 

 When   increases the mechanism dynamics is deteriorating. 

r=0.25 [m] l=0.3 [m] )3(8.0  

 For n=8000 [r/m] the mechanism is working normally (see the accelerations 

diagram from the picture 3): 
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Figure 3: Dynamic and kinematics accelerations; n=8000 [r/m]; 83.0  

r=0.25 [m] l=0.3 [m] )3(8.0  

 At n=9000 [r/m] the mechanism work abnormally (see the accelerations 

diagram from the picture 4): 
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Figure 4: Dynamic and kinematics accelerations; n=9000 [r/m]; 83.0  

r=0.25[m];l=0.3[m]  

 For a proper operation is necessary reduction of the ratio , especially if we 

want to increase the engine speed (see the next diagrams).  
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Figure 5: Dynamic and kinematics accelerations; n=12000 [r/m]; 

r=0.25[m];l=0.6[m] 42.0  
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Figure 6: Dynamic and kinematics accelerations; n=14000 [r/m]; 

r=0.25[m];l=0.9[m] 27.0  

 We can reduce the acceleration values by reducing r and l. 
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Figure 7: Dynamic and kinematics accelerations; n=15000 [r/m]; 

r=0.05[m];l=0.15[m] 33.0  
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Figure 8: Dynamic and kinematics accelerations; n=50000 [r/m]; 

r=0.003[m];l=0.009[m] 33.0  

 One can reduce the acceleration values especially if we want to increase the 

engine speed by reducing r and l (the lengths of crank and rod). 
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