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ABSTRACT 

A high number of instruments that assess various quality 

characteristics of interest that have an inherent variability monitors 

hydroelectric plants. The readings of these instruments generate time 

series of data on many occasions have correlation. Each project of a 

dam plant has characteristics that make it unique. Faced with the 

need to establish statistical control limits for the instrumentation data, 

this article makes an approach to multivariate statistical analysis and 

proposes a model that uses principal components control charts and 

statistical T2 and  to explain variability and establish a method of 

monitoring to control future observations. An application for section E 

of the Itaipu hydroelectric plant is performed to validate the model. 

The results show that the method used is appropriate and can help 

identify the type of outliers, reducing false alarms and reveal 

instruments that have higher contribution to the variability. 

Keywords: Statistical quality control; multivariate control charts; 

principal component analysis; dam safety. 
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1. INTRODUCTION 

 The control chart is one of statistical quality control techniques most used and 

can be very useful in controlling the instrumentation of a dam. The facility of online 

supplying of data with high frequency provides a huge mass of data that generates a 

series of control charts. However, it is necessary to interpret these data to produce 

additional knowledge beyond simple time series data. 

 Hotelling (1947) introduced multivariate control charts at the time of the 

Second World War and, from the development of computers that enabled its 

implementation, had great development. Its use has spread because of the need for 

quality control of several variables not is adequately treated with univariate tools such 

as Shewhart control charts, especially when there is correlation between variables. 

Once the variables do not behave independently of one another, they should be 

considered together and not separately (MASON; YOUNG, 2002).
 

 A typical control chart plots the averages of measurements of a quality 

characteristic as a function of time. The chart has a center line that represents the 

target of the quality characteristic value if there were no variability and the other two 

lines, the upper and lower control limits that are determined statistically. Such control 

charts are called Shewhart control charts (MONTGOMERY, 2013). 

 There are several techniques to address the multivariate control type 

Shewhart charts, among them the   charts, cumulative sums (CUSUM), 

exponentially weighted moving average (EWMA), principal component analysis 

(PCA), partial least squares (PLS), and non-parametric or distribution free techniques 

(BERSIMIS; PSARAKIS; PANARETOS, 2007). The PCA can be extremely useful in 

quality control applications, transforming a set of correlated variables into a new set 

of uncorrelated variables that can be easier to be monitored via control charts 

(JACKSON, 1991). 

 The monitoring of structural behavior of hydroelectric dams because the 

economic, social and environmental importance of plants requires that dams are 

monitored by means of tools for assessing the safety and ensure the operation of 

power generation. Usually a large dam has hundreds or even thousands of 

instruments that measure various quality characteristics of the dam. Evaluate the 

results of measurements instrumentation of a large number of instruments 
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individually may be impractical or even lead to high false alarms and discredit the 

monitoring system. 

 It should be given continuous attention to operation and maintenance of the 

safety of a dam power plant. The tool for this is the instrumentation of the dam. Due 

to the particularities of each hydropower plant, there are no universal procedures 

applicable to all dams in respect to the evaluation of the instrumentation. The 

evaluation and judgment of information available for an experienced engineering 

team is the best way to contribute to a decision and choose the best action to be 

implemented (USACE, United States Army Corps of Engineers, 1995). 

 The main sources of variability of the readings of instruments for monitoring 

dams are attributed to temperature, reservoir level and aging (ROSSO et al., 1995), 

(ITAIPU BINACIONAL, 1999; CHENG; ZHENG, 2013; NEDUSHAN, 2002).Two 

models were created to relate the effects of instrument readings and environmental 

variables in a dam of China. The methods showed ability to reduce the rate of false 

alarms and detect defective instruments (CHENG; ZHENG, 2013).  

 Diagnosed singular values in monitoring dam safety, with a case study on the 

hydroelectric plant in China, via multivariate analysis of principal components and 

graphic control Hotelling 	(GU et al., 2011). In a hydroelectric power in China it was 

applied a model that extracts principal components of data instrumentation and 

establish a seasonal hydrostatic in time model between the variables reservoir level, 

temperature and time effects and principal components (YU et al., 2010).  

 Techniques for detection of structural damage are proposed using nonlinear 

principal component analysis and auto-associative neural network method to data 

monitoring in an arch dam caused by varying environmental conditions through the 

statistical analysis threshold level for early warning on dam static deformation can be 

determined (LOH; CHEN; HSU, 2011). The PCA,  and  statistics are used to 

detect and distinguish damages in steel plates and turbine blades plane where 

vibrations caused are measured by sensors attached to the surface (MUJICA et al., 

2011). 

 In the dam instrumentation, control values are those closer to the physical 

reality, considering the thermal environmental influences that act on structures and 

more realistic rheological models of concrete and foundation. Control values are 
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used to monitor the performance of the structures by means of readings taken and 

are warning signs for abnormal situations of structural behavior. Values that were 

determined earlier in the design phase and the filling of the reservoir are not, in many 

cases, more applicable during the operation phase (ITAIPU BINACIONAL, 1999). It is 

necessary to establish operational control values for the instrumentation of 

hydroelectric plants. 

 This article aims to propose a multivariate statistical model for monitoring 

instruments for monitoring dams via control charts and principal components analysis 

and seeks to separate the effect of environmental variables on the reading of 

instruments from other sources of variability by use of statistics  and  and 

establish control values for monitoring future observations. The method is evaluated 

in a case study applied to real data from monitoring a dam hydroelectric plant. 

 The article presents in section 2 the theoretical basis of knowledge of control 

charts and statistics to be used in this work and the place where the case study was 

applied and its significance. The section 3 describes the data and methods used in 

the developed model. Section 4 presents and discusses the results of a case study. 

In the section 5 some conclusions and considerations are presented. 

2. MULTIVARIATE CONTROL CHARTS 

2.1.  control charts 

 The field of multivariate analysis consists of statistical techniques that consider 

two or more random variables related to a single entity in an attempt to produce an 

overall result that takes into account the relationship between the variables 

(JACKSON, 1991).The multivariate process control is a methodology based on 

control charts used to monitor the stability of a multivariate process. Stability is 

achieved when one or more parameters of interest remain stable on samples 

(MASON; YOUNG, 2002). 

 One of the first studies to examine correlated variables from the perspective of 

statistical control using multivariate procedures for military purposes was given by 

Hotelling (HOTELLING, 1947). This control procedure was based on a statistic that 

generalizes the Student  statistic which later received the name of Hotelling . 

 The application of univariate control charts can lead to erroneous and 

misleading interpretations and that multivariate methods are a good alternative 
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(MONTGOMERY, 2013; JOHNSON; WICHERN, 2007). If the variables are 

correlated increases the probability of emission of false alarms and not to receive an 

alert when the multivariate process is out of control (RYAN, 2011). 

 Let be  samples of  variables, extracted for evaluation, of a process under 

control, of size , represented by , where , 

with , taken from a -variate normal distribution, with mean  and 

covariance matrix  (MASON; YOUNG, 2002; MONTGOMERY, 2013). At almost 

always  and  are unknown and in the practice are estimated, respectively, by 

unbiased estimators , the sample mean and the positive definite matrix , 

where 

 

(1)

 

(2)

and  is the covariance between variables  and . Multivariate statistical 

generalization of  is the statistic called the Hotteling  or, only, , measuring the 

distance from an observation vector  to the mean vector  weighted by the 

covariance matrix  and is given by  

. (3)

 It is pointed to the existence of two phases in statistical quality control process. 

In the phase I (retrospective), the control limits are established and tested to the data 

available. It should be under levels considered statically under control. In the second 

phase (perspective) control limits are established from the same preliminary data and 

are used to monitor future data (MONTGOMERY, 2013; RYAN, 2011). 

 In the case of reading instrumentation monitoring of dams, which will be of 

interest in this work, the value of the  statistic evaluated in in the phase I by 

(Montgomery, 2013), (JOHNSON; WICHERN, 2007; RYAN, 2011), where a vector 

observation  is not independent of the estimators  and , is given by equation (3). 

The upper control limit  in the case of , is recommended to be calculated 

based on a beta distribution (MASON; YOUNG, 2002), in this case 

 

(4)
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where  represents the  quantile of the distribution  with  and  

degrees of freedom. The upper control limit ( ) of phase II, when the parameters 

are estimated in a previous sample and a vector observation  is independent of the 

estimators  and , is given by 

 

(5)

where  represents the  quantile of the  distribution with  and  

degrees of freedom. The  dimensional ellipsoid  prediction of a future 

observation is given by all vectors  satisfying 

 

(6)

where  is the number of samples (time). 

 An important issue in the treatment process with individual observations is the 

way of estimating the covariance matrix. The usual estimator is given by equation (2), 

however, there are various ways to estimate the covariance matrix, for example, the 

covariance matrix estimated by successive differences, is given by 

 

(7)

 This matrix was proposed by (HOLMES; MERGEN, 1993) and (CHOU; 

MASON; YOUNG, 1999) made a comparison between five types of covariance 

matrix estimates and showed that the common estimator  is preferred for outliers 

detection. 

2.2. Principal components analysis (PCA) 

 When the number of variables to be analyzed increases, the parameter that 

evaluates the average number of samples required to detect changes in the process 

is deteriorated, in this way, if suspected that the process variability is not equally 

distributed among all variables, it is useful to use other methods (MONTGOMERY, 

2013). 

 Techniques 'reduction' data are based on the principle of creating sets of 

latent variables that capture the significant variation 'hidden' in the data. The change 

that the sets of latent variables extract of the process variables is of fundamental 
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importance for the evaluation of product quality, process security and, more 

generally, if the process is in statistical control (KRUGER; XIE, 2012). 

 A method which can extract features in the data can be useful in dam safety 

study. As the instrumentation readings are a result of the combination of several 

factors, methods of multivariate data analysis can provide the following advantages: 

1) more profitable by reducing the number of individual analysis, 2) greater ability to 

explain and separate the variability due to one because of random variability 

attributable since the random variabilities are, by definition, uncorrelated from one 

instrument to another and 3) to identify patterns of behavior (NEDUSHAN, 2002). 

 The PCA is a multivariate data analytical technique in which a number of 

related variables are transformed into a set of uncorrelated variables that are linear 

combinations of the original variables, where it is expected to explain the variability 

between variables with a smaller number of variables (JACKSON, 1991). 

 Its industrial application has contributed to the multivariate statistical process 

control, since only a few of multivariate control charts can serve as an index of 

process performance. PCA improves the early detection of failures in relation to the 

univariate graphs (KOURTI, 2005). 

 The eigenvectors of the covariance matrix form the columns of the orthogonal 

matrix  the spectral decomposition of , so that 

 

(8)

where  is a diagonal matrix of eigenvalues representing the variance of each 

principal component (JACKSON, 1991). Therefore, one can transform  correlated 

variables  in  new uncorrelated variables  through 

the transformation 

 

(9)

Is also true that  

 

(10)
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However, when using a number  principal component, then takes the sub-matrix 

of order  of  and the sub-vector of order  in product , yielding an 

approximation to will be represented by . 

 There is no consensus in the literature regarding the amount and the criteria 

for determining the number of components to be retained. A series of criteria for 

choice is presented in Jackson (1991), in this work the choice was based on the 

percentage of variance explained and the ability to detect out of the limit values as 

compared with the control chart. Here, this choice is relativized because the not 

retained components will also be evaluated on the  statistic. 

 The fact that the PCA produce independent variables have the advantage of 

making it possible to compare the false alarm rate of statistical control procedures of 

multivariate quality with univariate procedures such as Shewhart charts, because, 

according Montgomery (2013), the true probability type I error, if the variables are 

independent to the set control procedure is , where  is the number 

of variables and there is no closed formula otherwise. 

2.3. Regression analysis for missing data 

 When working with large databases is relatively common not to have all the 

desired data. There are several reasons for this fact. In the case of automatic data 

acquisition, electronic problems could cause the loss or unreliability in receiving the 

information. In the case of non-automated acquisition, there may be several forms of 

human errors that cause no part of the data to be evaluated. 

 In multivariate case, it is suggested that missing data for a variable are 

obtained by using a regression procedure, e.g. linear, in which the variable with 

missing data is regressed on the other variables. A model of least squares can be 

used for the parameters of the variables in the linear prediction model (MASON; 

YOUNG, 2002). 

 Another way to treat this problem is given by the regression and time series 

forecasting established by well-known methodology of Box & Jenkins. The  

(auto regressive integrated moving average) models can be used to model time 

series data that has, making future predictions and cover missing data (BOX; 

JENKINS; REINSEL, 2008). In general ARMA models  has the form 
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(11)

 A measure of the suitability of a model to a time series is given by measuring 

the mean square error (MSE), given by 

 

(12)

where  is the observed value,  is the predicted value,  is the number of 

observations and  is the number of parameters of the  model or 

the number of independent variables used in the linear regression model. 

2.4. The  statistic 

 When is formulated a model of the principal components in which the 

projection data has been standardized, an observation, consisting of a vector  of 

variables, can be write as , if not taken all principal components, has only an 

approximation , so that 

 

(13)

 The first term on the right side of the equation (13) represents the contribution 

of  principal component and the second term the amount that is not 

explained by the principal component model, the residual. There are two types of 

outliers associated with each of these terms, the first term of an outlier that would be 

detected even if the principal component model was not applied and the second term 

indicates that an outlier any observation vector that cannot be adequately 

characterized the subset of principal components chosen (JACKSON, 1991). The  

statistic is defined by 

 

(14)

 is also sometimes known by  (squared prediction error). A preview of the vector 

 in the space of principal components in relation to the space of components 

retained is seen in the Figure 1.This statistic represents the changes that are not 

explained by the principal component model. It is a measure of the difference 

between the sample mean and its projection on the PC model (MUJICA et al., 2011). 
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Figure 1: Geometric interpretation of the residual vector in the space of principal 

components. 

The upper control limit of , denoted by , according Mudholkar and Jackson 

(1979) is 

 

(15)

where  is the value that corresponds to  percentile of the standard 

normal distribution,  is the probability of type I error (will be fixed at 0.0027 here) 

and  

 

(16)

for ,  is the th eigenvalue of the covariance matrix and 

 

(17)

2.5. The Itaipu dam and the importance of instrumentation 

 Recently, in May 2014, the Binational Itaipu Dam, located on the Paraná River 

between Brazil and Paraguay, completed 30 years since the beginning of the 

generation and the world leader in production of clean and renewable energy. Itaipu 

is responsible for producing  of electricity in the Brazilian market and  of the 

Paraguayan market (JORNAL INTERNO DE ITAIPU, 2014). In  years of operation, 

Itaipu has generated  billion MWh, enough to supply the entire world for  days 

and Brazil for almost five years energy.  
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 Itaipu is currently the second largest dam in the world in installed capacity, 

 MW in  generating units, overcome by Three Gorges Dam in China which 

has installed capacity of  MW. Nevertheless, Itaipu still exceeded Three 

Gorges in annual energy production until 2013 (JORNAL INTERNO DE ITAIPU, 

2014; GAZETA DO POVO, 2014; GLOBO, 2014). 

 To maintain these important economic numbers from the point view of 

environmental issues and the impact on the entire community that is close not only to 

the dam, but also to the entire area of the reservoir, it is necessary to ensure that the 

behavior of the structures is under control. 

 In countries where hydropower potential has been exploited extensively, this 

development started over  years ago and many dams are aging and it is necessary 

to maintain the security conditions which may prevent costly repairs and that are 

often conflicting with the production of energy (XXIII INTERNATIONAL COMITEE OF 

LARGE DAMS, 2009). The improvement of dams not only ensures the safe operation 

and performance, but also improves its efficiency (XXIII INTERNATIONAL COMITEE 

OF LARGE DAMS, 2009). 

 The dams should have adequate instrumentation for monitoring their 

performance. The goal is to control the operation of the dam safely under any 

condition. The instrumentation shall allow the measurement of the structural behavior 

and the physical condition of the dam (USACE, UNITED STATES ARMY CORPS OF 

ENGINEERS, 1995). 

3. DATA AND METHODS 

 This work was developed with real data from the instrumentation section E the 

Itaipu hydroelectric plant, shown in Figure 2. Faced with various instruments present, 

the piezometers were chosen because of the amount and the importance of their role 

in measuring uplift pressures in the dam. 

 The E section has seven piezometers. As the frequency of readings from the 

period of reservoir filling in  varied, was chosen to analyze the period from  

until  when the readings were approximately biweekly for all piezometers. This 

period generated  readings for each instrument from now on called 

piezometers . 
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 The reading of each piezometer is an independent and identically distributed 

random variable. For phase I, the adjustment test (retrospective) of the model, were 

selected  readings and for Phase II validation (perspective) of the model, we 

selected the remaining  readings. It is important to mention that in this phase I data 

are considered under the control of a statistical point of view. The instrument  had 

some missing data during the phase I. In this way, the linear and by time series 

regressions were applied and the  equation (12) was used to choose the best 

model for filling the missing data. 

 
Figure 2: Dam of Itaipu and section E featured. 

Variables that are in very different scales and domain variation should be 

standardized (JOHNSON; WICHERN, 2007). The reason for this procedure is that 

the original variables can have scales and domain quite distinct giving false 

interpretation of its real magnitude variability, which is avoided by standardizing 

(MONTGOMERY, 2013). 

The steps of the method consist of: 

 Gathering and data standardization;  

 Prediction of missing values;  

 Test the multivariate normality;  

 Choosing the Type I error probability and the estimate of the covariance 

matrix;  

 Construct the graphic  for the full set of variables;  
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 Extraction and selection of the number of principal components and normality 

test;  

 Construction of the graph  and the ellipse control of the principal 

components in phases I and II;  

 Calculation of residual and  statistics;  

 Construction of -chart; 

 Interpretation of results. 

4. RESULTS 

 Among the forecast models for missing data to  was chosen a model 

 with , the lowest compared to other  regression 

models and linear regression on the other variables to adjust missing data 

between observations  adjusted under the  preceding. To evaluate the 

hypothesis of multivariate normality was used a test of adjustment  described in 

Mingoti (2005) and Johnson and Wichern (2007). For each vector  

containing the standard readings of piezometers was calculated 

 

(18)

where  corresponds to the  percentile of the distribution . Once exactly 

 of the first phase of the sample satisfied the condition, we can accept the 

hypothesis that the data come from a multivariate normal distribution at  

confidence level. 

 For comparison, univariate charts Shewhart control of the sample mean  

were built for phase I, ,  e  is, according Montgomery 

(2013) an unbiased estimator for σ, given by , where  is the average 

amplitude and , so that the false alarm rate is . The Table 1 

shows the number of observations outside the control limits (OCL) to univariate 

Shewhart charts respective of  to  instruments to 300 data of phase I. Note the 

impossibility of univariate treatment with the high number of observations OCL. 

 To select the estimator covariance matrix to be used in  chart for the data 

on the seven standard piezometers were tested usual covariance matrix (2) and the 
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matrix successive differences (7). The Table 2 shows the number of observations 

outside the control limit (OCL) for chart for each type of tested covariance matrix 

for a type I error probability fixed at  for every variable that corresponds 

the limits  of Shewhart charts, then, according Montgomery (2013), the real 

probability of type I error if the variables are independent, for all control procedure 

is . It should be noted, of course, the original variables are 

not independent. 

 Nevertheless the multivariate treatment becomes feasible, since the 

probability that 8 or more observations in the universe of 300 are at random above 

 if the data originates a multivariate normal distribution is , for 

, it cannot reject the hypothesis that the process is in statistical control at 

95% confidence. Because the matrix (7) is more sensitive to small deviations from 

the mean, for the purpose of this study, the matrix (2) was selected. 

Table 1: Observations outside the control limits (OCL) for univariate charts. 
Inst.  OCL	 Inst.  OCL Inst.  OCL Inst.  OCL Inst.  OCL Inst.  OCL Inst.  OCL

              

Table 2: Number of observations (OCL) to each covariance matrix for the  chart. 
Matrix 

 

Observations 
 

Usual 
  

 

Successive Differences
 

All 

Extracting the principal components of the data set of phase I, a simulation was 

performed by selecting  principal components that explain a percentage 

of variability as shown in Table 3.  

Table 3: Variability explained by principal components. 

Component Eigenvalue
Variability (%) 

Explain Accumulated
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 The eigenvectors of the matrix  of the spectral decomposition of  are shown 

in Table 4. Data from scores of  principal components were retained and 

multivariate normality was tested by the test  at a confidence level of  that 

obtained the acceptance of the hypothesis normality, according second column of 

Table 5. 

Table 4: Eigenvectors of the sample covariance matrix S. 

 

Table 5:  chart results of  PC’s obtained from the retention  PC’s. 

   

Phase I Phase II 

  

  

  

 	

           

     

 

 
   

 

 
 

     

 

 
   

 

 
 

     

 

 
   

 

 
 

     

 

 
   

 

 
 

 For example, the upper control limit for statistical  (scores of  PC’s) in 

phase I was calculated from equation (4) and resulted in  and all 

observations of this phase did not exceed the control limit. For phase II, the upper 

control limit of statistical  calculated from equation (5)  resulted . For 

the remaining numbers of components upper control limits are in the fourth and 

octave column of the Table 5. The fifth and ninth columns of Table 5 contain the 

number of observations outside the control limits ( ) for the phase I ( ) and 

for the phase II ( ) and these observations ( ) are in the sixth and tenth 

column for  charts in the phases I and II. Finally, seventh, and eleventh columns of 

Table 5 contain the probability that the amount of  obtained is in control statistical 

at 95%, that is, values less than 5% should reject the hypothesis that the data are 

under control. 
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 If we use  of the  principal components, then taking the sub-matrix 

of order  of  and the subvector of order  in the product , yielding an 

approximation for , denoted by , using the equations (8),(9) and (10). The value 

obtained for the upper control limit of statistical  using equations (16), (17) and (15) 

was  when , the others values of  for  are in the second 

column of Table 6. The remaining columns of Table 6 show the amount of , 

 and what are these observations. 

Table 6: Results for  chart of the principal components. 

 

 chart of the  PC’s 

  

. 
 

. 

      

      

      

      

      

 The control chart of statistical  including the data of the two phases is shown 

in the Figure 3 and the Figure 4. displays the control of the ellipse  confidence 

data  for the first two principal components, the point in red represents the single 

observation out of control, which is outside the ellipse control we take the 

components  and . These plots were constructed for   and the usual 

covariance matrix, equation (2), at  confidence level. 
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Figure 3:  chart for 4 principal components retained in phases I and II. 
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Figure 4: Ellipse control scores the first 2 components of 4 PC’s retained. 

 The Figure 5 shows the behavior of the statistic  in the period of analysis, 

for , calculated by equation (14). 
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Figure 5: Values of the  statistic for  principal components in the phases I and 
II. 

5. CONCLUSIONS 

 This paper attempted to establish a method for dealing with control charts for 

dam monitoring instruments. In practice, given the large number of instruments in a 

large dam and the correlation between them, the individual monitoring of each 

instrument can be unfeasible, either by excessive graphics to analyze or the large 

number of false alarms that can discredit the system. The proposed method involves 

multivariate analyzes and summarizes the analysis of a set of instruments in the 

statistics  and  combined with PCA for explaining, respectively, the inherent 

variability (assignable causes) and random sources in the system. The objective was 

to reduce the work using multivariate analysis, reducing false alarms to statistically 

under control levels and identify differences in observations outside the control limits 

for  and  statistics. 

 Is worth mentioning that if it he had chosen to analyze seven Shewhart 

univariate charts for the mean and the  control limits would be obtained between 
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82 and 239 values out of control (see Table 1) and the problem of establishing the 

limit values for instruments cannot be treated by this technique. 

 The results show that the principal components model combined with the 

statistic best fit data of phase I when are taken, at least, four principal components, 

because in this case the observations listed as out of control to the  chart 

appearing as out of control to the  chart of  principal components or  chart 

(compare Table 2, Table 5 and Table 6) and showed that, in the case study applied 

the multivariate monitoring of piezometers, located in section E of the Itaipu 

hydroelectric plant, system is in statistical control at  confidence, independently 

of the contracted model, i.e.,  chart or principal components combined with  

statistic. 

 Another benefit of the combined use of these statistics with 4 principal 

components was that the observations identified as out of control, one can make a 

distinction between them. Among the observations given as out of control for the  

statistic for 4 PC's (see Table 6), observation 25 is related to the maximum global 

value of the instrument , observation 140 is associated with the local maximum 

value in the instrument (both outliers are apparent) and observation 249 is 

associated with the global maximum of  which is the instrument with smaller 

variance. 

 The adopted model enables an interpretation of the PC’s as a consequent 

variability of environmental factors (inherent) to the model. It is essential to 

understand that the variability of the principal components is originated from these 

factors and also control the random variability that may be linked to outliers 

( statistic). 

 The use of principal components has another advantage which is to overcome 

the problem of singularities. In this case study, for example, the determinant of the 

covariance of all the original variables matrix was . The singularities are 

associated with the existence of eigenvalues near zero that can generate 

computational problems in the inversion of the covariance matrix and the consequent 

calculation of  statistical. 

 The first four principal components explain more than 90% of the variability. It 

was observed that the first principal component has an interpretation in terms of an 
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average contribution of each instrument for the overall variability and that this 

depends on the elevation layer and in which they are. According to the first column of 

Table 4, it can be seen that the  instrument is has the greatest contribution to this 

principal component and its location is before a concrete injection curtain and at a 

lower elevation, i.e., the local theoretically more susceptible to uplift pressures. The 

second instrument with greater contribution in this principal component  is located 

in a joint with lower elevation, as shown in Figure 6. Since the instrument that has 

almost no effect on this component is  and its location is after injection curtain at 

the top elevation of instruments study. This confirms the efficiency of concrete 

injecting curtain at the dam. 

 
Figure 6: Piezometers in section E of Itaipu Dam 

Source: adapted from Itaipu Binational. 

 Suggestions for future work involving this type of approach may be the use of 

non-parametric statistics, the variation of the rate of false alarms  and the analysis 

of other instruments can also enable the discovery of new knowledge, as well as 

seek interpretation for other principal components. 
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