
 

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br  v. 6, n. 1, January - March 2015 
ISSN: 2236-269X 
DOI: 10.14807/ijmp.v6i1.252 

 

 
[http://creativecommons.org/licenses/by/3.0/us/] 
Licensed under a Creative Commons Attribution 3.0 United States License 

 83 

 DESIGN OPTIMIZATION OF TRIPOD TRUSS: SLP APPROACH 
 

Goteti Chaitanya 
R.V.R&J.C College of Engineering (A), 

Andhra pradesh India 
E-mail: chaitanyagoteti16@gmail.com 

 
Reddy Sreenivasulu 

R.V.R&J.C College of Engineering (A),  
Andhra Pradesh India 

E-mail: rslu1431@gmail.com 
 

Submission: 23/07/2014 
Accept: 06/08/2014 

ABSTRACT 

The efficiency of sequential linear programming technique in 

optimizing nonlinear constrained structural optimization problems is 

studied in this paper considering tripod truss structure as a case 

study. The problem is formulated for minimum weight considering 

localized buckling stress, Euler buckling stress and direct compressive 

stress as constraints. The axial force in each of the members of the 

truss due to payload is estimated using vector mechanics. The 

structure is optimized considering mean diameter and payload height 

as design variables. The weight of the truss got reduced by 

20.51%.The optimum values of design variables obtained are 

compared with the values obtained using graphical method. The 

optimum values of objective functions obtained using both the 

approaches are in reasonable agreement with a mere 5.17% variation. 

Keywords: Sequential Linear programming, mean diameter, height, 

buckling stress. 
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1. INTRODUCTION 

 The optimization of nonlinear multi variable constrained problems can be 

broadly addressed using four approaches. The heuristic search methods (eg: box 

method), methods of feasible search direction (Rosen, zoutendijk’s...etc), sequential 

linear and quadratic methods, using sequential unconstrained minimization 

techniques (Interior, exterior penalty methods and Augmented Lagrange methods). 

 Rao (2009) presented in detail various nonlinear constrained optimization 

techniques, their relative advantages and limitations. The sequential linear 

programming has the following advantages over other methods. Unlike box method, 

SLP doesn’t insist that the starting design vector should be a feasible design vector. 

 The rate of convergence in most of the methods based on feasible search 

direction depend on the choice of initial starting design vector and step length as the 

gradient value of the function evaluated at the starting design vector and step length 

influences the successive design vector. In case of SLP (Sequential linear 

programming), the nonlinear problem is solved as a series of LP (Linear 

programming) problems without relying on random search direction and step length. 

This ensures faster convergence compared to gradient (feasible direction) methods. 

 Penalty function and Augmented Lagrange approaches cannot be applied 

independently to many structural design problems as it is very difficult or sometimes 

nearly impossible to express design variables explicitly in terms of penalty 

parameters upon partial differentiation. These penalty methods have to be applied in 

conjunction with any of the nonlinear unconstrained methods.  

 This makes the process complex, highly iterative involving large computational 

time and effort. On the other hand SLP (Sequential Linear programming) is 

computationally simple requiring less computational time and effort. SLP also known 

as cutting plane algorithm was first introduced by Cheney and Goldstein and later 

improved by Kelly.  

 Deb (2009) presented in detail with examples, the Frank-Wolfe method which 

is another SLP technique. It also works on the principle of linearization of objective 

function and constraints and solves a sequence of LPPs to arrive at optimum. 

However, it relies on the parameter α є (0,1) for generation of successive points in a 

unidirectional search approach. The major limitation of this method is that in highly 
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nonlinear problems, the search is limited to a small neighborhood of the start point. 

The present problem is modeled as a multi variable nonlinear constrained 

optimization problem.  

 Local buckling stress, Euler’s buckling stress and direct compressive stress 

are considered as constraints to the optimization problem. Schafer and Asce (2002) 

presented various empirical models for localized buckling of thin walled columns and 

struts depending upon end conditions, t/w or t/d ratio and section geometry. 

 Mamaghani (2004) studied the influence of ratio parameter (t/d), slenderness 

ratio, residual stress on the ultimate strength of concrete filled thin steel columns. 

Bradford, Hy and Uy (2002) established slenderness limits for various circular thin 

walled steel tubes  by giving the localized buckling stress its due importance.The 

problem so formulated with above mentioned constraints and variables  is optimized 

using Kelly’s SLP approach and graphical method of optimization.  

2. FORMULATION OF THE PROBLEM   

 A tripod truss with the following specifications is considered as the case study 

problem. Elastic modulus (E)= 207x109 N/m2, Density (ρ)=7800 kg/m3, payload 

(p)=111kN and yield stress (σy)=414x106 N/m2 and Poisson’s ratio υ=0.3.The 

geometry of the tripod truss is shown in Figure 1. The truss is made of three identical 

members of hollow circular section arranged in the manner shown. The coordinate 

positions A, B, C and D of the truss are estimated from the geometry of the figure. 

 The axial forces in each of the members of the truss AD, CD and BD are 

estimated as follows.  
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    Figure 1: Geometry of tripod truss 

 

 The resultant is formed as algebraic sum of equations 1 to 3 and F


=111kN. 
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 The objective of minimizing weight of truss as function of design variables 

mean diameter (d) and height of the truss (h) is expressed as: 

(w) ( ( )) 3( dt )Min Min f x g   
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 The Euler and local buckling stresses and direct compressive stresses are 

expressed as: 
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 The localized buckling is given by Schafer’s empirical relation [Ref no:3] as: 
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 The direct compressive stress may be expressed as: 
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 Therefore, the problem of minimizing the weight of the tripod truss structure for 

the given set of design variables subject to various stress constraints stated can be 

expressed as follows:  
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3. SEQUENTIAL LINEAR PROGRAMMING TECHNIQUE 

 The flow chart shown in Figure 2 illustrates the working of Sequential Linear 

programming technique. In case of sequential linear programming technique, the 

starting design vector need not be feasible. However, for the present problem, a 

feasible design vector is chosen satisfying all the constraints for a possible reduction 

in the number of iterations. The starting design vector for the present problem is 

(x1=0.9m, x2=0.08m). The linearized objective function and constraints based on the 

starting design vector for the formulation of initial simplex table are given by 

equations 8 to 11. 
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Figure 2: Flow Chart for Sequential Linear Programming technique 

4. RESULTS AND DISCUSSION 

 The linearized objective function and constraints given by equations 8 to 11 

are optimized by forming LPP and deploying two phase simplex scheme. Table 1 

presents the results of the final optimized simplex. From the table, it can be seen that 

the optimum value of the objective function is 469.31 N at x1=0.3 meters and 

x2=0.0701meters.  

 A 20.51% reduction in weight of the truss is observed from a starting value of 

590N for an initial design vector of X= (0.9m, 0.08m). The values of the optimum 

design variables satisfied the original nonlinear constraints and the need for 

relinearization of constraints did not arise for the particular problem as the condition 

gj(Xi+1)≤ε is satisfied for all j=1 to 3, for the chosen value of ε=0.001. 

 This can be attributed to the fact that the initial design vector X=(0.9m, 

0.072m) chosen is feasible, in spite of the fact that SLP doesn’t insist for a feasible 

starting design vector. The SLP program generated a local optimum in the close 
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neighborhood of the initial design vector. Figure 3 presents the optimum values of the 

nonlinear objective function and constraints from graphical approach.  

 From the graph shown in Figure 3, Xopt= (0.22m, 0.067m), which yielded a 

value of 445N to the objective function. The optimum values of objective functions 

from SLP and graphical approaches differed by 5.17%. The variation in the optimum 

values of objective function obtained using the two approaches can be explained 

using Figure 4.  

 From Figure 4, it can be observed that the points c, e and f fall outside the 

feasible space and point “a” corresponds to the actual optimum lying on the boundary 

of feasible region. Each stage of linearization produces only an approximate linear 

function which may not satisfy all the constraints given by gj(X). As seen from Figure 

4, to move close to the point “a”, a series of linearization steps are required which in 

turn depend upon the order of nonlinearity, convexity of the function and the chosen 

value of starting design vector. Therefore, a small positive quantity ε is chosen as the 

convergence criterion to minimize the iterative steps. The value of the parameter “ε” 

chosen influenced the variation in the results.  

Table 1: Optimum Simplex table from two phase simplex method 

 
 



 

 
[http://creativecommons.org/licenses/by/3.0/us/] 
Licensed under a Creative Commons Attribution 3.0 United States License 

 91 

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) 
http://www.ijmp.jor.br            v. 6, n. 1, January - March 2015 
ISSN: 2236-269X 
DOI: 10.14807/ijmp.v6i1.252 

 
Figure 3: Optimum solution for the nonlinear constrained problem using Graphical 

approach 
 

 
Figure 4: Graphical representation of SLP approach:    

Source: Rao, 2009 
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5. CONCLUSIONS 

 The following conclusions are drawn from the present work: 

 The efficacy of Sequential linear programming technique in optimizing 

nonlinear constrained structural engineering problems is studied in this paper. 

 A 20.51% reduction in weight of the truss is found using SLP approach. 

 The design variable x1(Height of the truss h) predominantly influenced the 

optimum value of the objective function. 

 The optimum value of design variable x2 (Mean diameter) did not oscillate 

much from the starting feasible value due to the linear restriction imposed on 

the design variable (x2≤0.072). 

 The value of the chosen convergence parameter “ε”, influenced the variation in 

results obtained from the two approaches (SLP and graphical). 

REFERENCES 

BRADFORD, M. A.; HY, L.; UY, B. (2002) Slenderness limits for circular steel tubes. 
Journal of Constructional Steel Research, v. 58, p. 243-252. 

DEB, K. (2009) Optimization for Engineering Design: Algorithms and examples, 
PHI  Pvt ltd.  

MAMAGHANI, I. H. P. (2004) Seismic design and retrofit of thin walled steel tubular 
columns, 13th world conference on earth quake Engineering, august, p.1-15. 

RAO, S. S. (2009) Engineering Optimization-Theory and Practice, 4th edition, 
John-Wiley & sons.  

SCHAFER, B. W.; ASCE, M. (2002) Local, distortional and Euler buckling of thin 
walled columns, Journal of structural Engineering, March, p. 289-299.  


