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ABSTRACT 

The Brazilian Civil Aviation Agency’s (ANAC) surveillance missions have great relevance for the 

effectiveness of its performance. Hence, several studies have already aimed to optimize this process, 

and mathematical models are conceived for this purpose. However, some of these linear programming 

models have a degenerate structure, which compromises their sensitivity analysis related to the dual 

model and further analysis of the model's scenarios. Thus, the objective of this work is to present a case 

study consisting of ways to perform sensitivity analysis in ANAC’s mathematical models with 

degenerate solutions. To that end, the method of sensitivity analysis proposed by Koltai and Tatay 

(2011) is applied in a mathematical model elaborated to assist in the designation of inspectors for 

surveillance missions in ANAC’s Operational Standards Superintendence (SPO), as proposed by 

Pinheiro (2018). Finally, the objective was achieved and this article contributes to the Academy and 

the market by presenting a reference of how to perform a more assertive sensitivity analysis in a 

degenerate case. 

Keywords: Linear Programming, Sensitivity Analysis, Degenerate, ANAC 

1. INTRODUCTION 

 The Brazilian Civil Aviation Agency’s (ANAC) surveillance missions consist of the 

displacement of inspectors to carry out activities in locations in the various federative units of 

Brazil. Each mission has a specific demand, which requires qualified professionals and 

includes airfare costs and daily expenses. The country’s recession scenario has been affecting 

the execution of these missions, as well as ANAC being subject to the budgetary contingencies 

imposed to most federal agencies. Budgetary contingency in this case consists of delays or even 



 

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) 
http://www.ijmp.jor.br v. 13, n. 5, May - July 2022 
ISSN: 2236-269X 
DOI: 10.14807/ijmp.v13i5.1701  

 

 
[https://creativecommons.org/licenses/by-nc-sa/4.0/] 
Licensed under a Creative Commons Attribution 4.0 

 

1279 

the non-execution of a part of the expenditure planning provided for in the Annual Budget Law 

(LOA) due to insufficient credit. 

 ANAC’s Fiscal Year Management Report 2016 to 2019 present the budgetary 

constraints, tax restrictions and LOA credits arrest as clear difficulties for the proper 

operational implementation of the Agency's budget. This situation generated restrictions in the 

processes of certification and inspection since they depend on that budget for inspector’s airfare 

and daily expenses in order to perform on site activities. 

 ANAC's Strategic Plan from 2020 to 2026 aims to promote the allocation of resources 

in a strategic and effective manner (OE13) due to the context of increasingly scarce resources. 

In addition, OE2 brings the importance of certification and inspection to ensure the perpetual 

maintenance of air transport security and OE12 says that it is necessary to manage people 

effectively. Thus, efforts are made to improve the mechanisms and procedures for managing 

resources, including human resources, in order to guarantee the effectiveness of ANAC's 

activities. 

 Another problem regarding ANAC's certification and inspection missions is the 

designation of inspectors. Some studies have investigated ways to optimize this process. The 

first of these, from Nascimento (2016), focused on improving the process for optimal and 

efficient distribution of ANAC’s inspections, performing the mapping AS IS (current situation) 

and TO BE (future situation that one aims to achieve) of this process. The following papers 

from Freitas Júnior (2017), Celestino, Reis and Júnior (2018), Reis and Celestino (2018), 

Pinheiro (2018) and Silva (2018), developed mathematical models to support the decision to 

allocate inspectors to ANAC´s surveillance missions.  

 In these last studies, when performing the sensitivity analysis of the model, it was 

verified that the results obtained were degenerates. When this happens, the results of sensitivity 

analysis obtained by the Dual process become uncertain and it is necessary to perform more 

calculations in order to obtain the correct information to support the decision-making. 

Therefore, in view of the importance and limitation of resources in the process of inspector 

designation and missions, this work aims to to exemplify how sensitivity analysis in ANAC’s 

previously developed mathematical models can be created in order to obtain valid results, given 

its degenerate characteristic.  
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 This research’s choice of theme is justified by its relevance to the scientific world, since 

there are few studies that address sensitive analysis, especially in models with degeneration. 

This indicates that there is still much to be explored on the subject. Thus, this research seeks to 

contribute with a demonstration of the application of the Koltai and Tatay method (2011) of 

sensitivity analysis to the model formulated by Pinheiro (2018) in order to support the decision 

of a real problem at ANAC. Considering that this is a model with a degenerate solution, the 

application will provide a more accurate interpretation of the solutions and could be used in the 

future as a reference for decision makers who want to apply the method. 

2. THEORETICAL BACKGROUND 

2.1. Linear Programming and Duality 

 Linear Programming (LP) is a technique that uses mathematical models to deal with 

problems of allocation of limited resources between activities that compete with each other, as 

well as other problems that have a similar mathematical formulation (Hillier & Lieberman, 

2013). LP models are formed, in general, by decision variables, parameters, objective function 

and constraints.  

 Decision making process can control decision variables, so when testing these 

variables’ values one can find the solution of the problem. Parameters are model variables that 

cannot be controlled by the decision-maker, so it refers to fixed values that should be 

considered for the solution of the problem. The objective function represents the measure of 

performance to be maximized or minimized in the model. Constraints, on the other hand, 

represent the limitations or requirements in the set of possible decisions (Colin, 2013). 

 Another important feature of LP problems is their duality, that is, one can express every 

LP problem in two ways. The original problem is called primal and the problem associated 

with it, dual. "The properties of the primal are closely linked to those of the dual, and the 

optimal value of the objective function is the same for both forms" (Caixeta-Filho, 2011, p. 

54). Thus, primal and dual share several associations. Table 1 presents some of the associations 

that one should consider when transforming primal into dual, or vice versa. 

Table 1: Relations between primal and dual problems 
Primal problem Dual problem 

Objective function of maximizing Objective function of minimizing 
Coefficients of the objective function Constraint constants 

Constraint constants Coefficients of the objective function 
Number of variables Number of constraints 

Number of constraints Number of variables 
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Constraint type ≤ Constraint type ≥ 
Constraint type ≥ Variable ≤ 0 
Constraint type = Variable without signal restriction 

Source: Prepared by the author 

 According to Lachtermacher (2018), there are two reasons for studying dual problems. 

The first relates to the amount of constraints. When the primal has too many constraints it is 

easier to solve the problem by its dual, since the amount of constraints will be equal to the 

number of variables of the primal’s objective function.  

 Therefore, there will probably be a smaller number of constraints, which makes it easier 

to find the optimal solution. The second refers to the economic interpretations obtained from 

the dual problem decision variables’ values (also called shadow price or dual price). According 

to the Complementary Slack Theorem, the dual decision variables are associated with the 

primal slack/excess variables.  

 In general, they represent the value by which the objective function would change into 

if the resource quantity were to be reduced/increased one unit. To analyze this type of change, 

there is a procedure performed in the LP models that is called sensitivity analysis. 

2.2. Sensitivity Analysis in Linear Programming 

 When solving LP problems, one assumes that all model parameters (independent terms, 

coefficients of the objective function and of constraint) are constant and known with certainty 

(Fávero & Belfiore, 2013). However, the application of the solution in the real world can 

generate changes in some parameters, causing uncertainty about the quality of the optimal 

solution. Thus, to minimize the inaccuracy regarding these changes, one performs an analysis 

to verify the possible up and down variations of the model’s parameters values that do not 

cause alteration in the optimal solution (Lachtermacher, 2018). Such a study is called 

sensitivity analysis. 

 The main objectives of sensitivity analysis are: (1) to identify the sensitive parameters 

that change the optimal solution; and (2) determine the possible intervals of values for non-

sensitive parameters along which the optimal solution will remain unchanged (Hillier & 

Lieberman, 2013). In this fashion, sensitivity analysis helps decision-makers evaluate how 

changes in the model and in the real world can affect the solution (Colin, 2013), in addition to 

identifying how much the solution is dependent on a particular constant or coefficient 

(Lachtermacher, 2018). 
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 According to Lachtermacher (2018) and Fávero and Belfiore (2013), one can use 

sensitivity analysis for two distinct cases. The first, called sensitivity analysis, can be 

characterized by evaluating the possibilities of variations and influences in the optimal solution 

of a problem when there is only one change at a time; while the second, called post-

optimization sensitivity analysis, evaluates when more than one change occurs simultaneously.  

 In addition, Colin (2013) presents that from the theoretical point of view sensitivity 

analysis can happen in: changes in the values of the objective function’s coefficients; changes 

in the right sides of the constraints; changes in the constraints’ coefficients (left sides) and 

introduction and removal of variables and constraints. In each of these cases, one performs 

sensitivity analysis in a certain way and uses indicators that present the possible changes in 

each of these factors, without a change in the optimal solution. These indicators are the 

following: reduced cost, shadow price, allowed increase and allowed reduction. 

 The reduced cost represents the cost of including a variable in the optimal solution in 

order that a variable’s value ceases to equal zero in the optimal solution. Thus, it is observed 

that the reduced cost is a measure that can be calculated only for the non-basic variables of the 

model, that is, those that assume null values in the optimal solution. Therefore, for the basic 

variables, the reduced costs will always be zero (Fávero & Belfiore, 2013). 

 The shadow price, also called dual price, represents the equivalent unit value of a 

resource. This concept is observed mainly in sensitivity analyses based on changes in the value 

of one of the constants on the right side of the constraint, that is, when there are variations in 

the availability of resources. Therefore, the shadow price demonstrates the increase or decrease 

in the value of the objective function if one adds or withdraws a unit in the current amount of 

resources available in the constraint (Fávero & Belfiore, 2013). 

 Finally, sensitivity reports also show the lower and upper limits of decision variables, 

objective function coefficients and constraint constants. One can refer these limits as allowable 

decrease and allowable increase. They represent the lowest and largest values that decision 

variables, coefficients of the objective function and constraint constants can assume 

(considering that all other variables remain constant) as long as no constraint fails to be fulfilled 

causing the solution to become unfeasible (Lachtermacher, 2018). 

 The allowable decrease and allowable increase values can eventually equal zero. This 

fact can indicate two different situations. First, when it occurs for constraints, it means that the 
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optimal solution is a degenerate, that is, the solution of the model has one or more basic 

variables with the value equal to zero. Secondly, when it occurs for the objective function’s 

coefficients (there are no degenerate solutions) it means multiple optimal solutions exist, hence 

different values for the decision variables reach the same optimal value in the objective 

function.  

 In the presence of multiple optimal solutions, it is possible to calculate workarounds 

using sensitivity report information. However, the presence of optimal degenerate solutions 

impacts the interpretation of the sensitivity report in several ways ergo one should perform the 

analysis with ultimate care. 

2.3. Degenerate Solution 

 Degeneration occurs when one or more basic variables equal zero. Thus, if the optimal 

solution for a LP has less than m positive variables, it is called a degenerate solution (Moore 

& Weatherford, 2005, TEA-4), m being the number of constraints. Normally, one can identify 

a degenerate solution sensitivity report when the allowable increase or allowable decrease for 

a shadow price is zero. 

 According to Taha (2008), from a practical point of view, a degenerate solution reveals 

that the model has at least one redundant constraint. From the theoretical point of view, 

degeneration has two implications, which are: 

a) The phenomenon of cycling or cyclic return: solutions enter a sequence of changes that 

never improve the value of the objective function and never satisfy the optimality 

condition; 

b) Interactions with different categorization of their variables as basic and non-basic result 

in identical values for the value of the objective function. 

2.4. Interpretation of Sensitivity Analysis of a Degenerate Solution 

 When an optimal solution is a degenerate, the results obtained in sensitivity analysis are 

no longer reliable. Therefore, one needs to observe certain points at the time of their 

interpretation. According to Moore and Weatherford (2005), Ragsdale (2001, apud 

Lachtermacher, 2018), Ragsdale and Lachtermacher (2009, apud Belfiore & Fàvero, 2013) the 

following conclusions can be drawn in this situation: 
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a) Reduced costs and/or shadow prices (and their intervals) are still valid, but may not be 

unique. Thus, it is possible that two different solutions are generated, presenting the 

same optimal values for the decision variables and values of the objective function, but 

with some or all of the reduced costs and/or shadow prices (and intervals) different; 

b) The variation intervals (allowed increase and allowed decrease) of the coefficients of 

the objective function are still valid, but the coefficient can assume values outside this 

interval and still not change the optimal solution;  

c) When a variation’s interval (allowable increase and allowable decrease) of the 

coefficient in one of the variables of the objective function is also zero, the multiple 

optimal solutions’ statement of occurrence is not reliable. 

 In general, one can observe that the results of sensitivity analysis become uncertain in 

the presence of optimal degenerate solutions. Thus, more calculations are needed to obtain the 

information necessary for management decision making (Jansen el al, 1997 apud Koltai & 

Tatay, 2011).  

3. RESEARCH METHODOLOGY 

3.1. Study Design 

 According to Fontelles, Simões, Farias and Fontelles (2009) this research is classified 

as applied, observational, quantitative, exploratory, documentary, transversal and 

retrospective.  

3.2. Characterization of organization, population and sample 

 The object of this research was the Brazilian Civil Aviation Agency (ANAC), a 

Brazilian federal regulatory agency, responsible for the regulation and supervision of civil 

aviation and airport infrastructure activities. 

 Regarding its organizational structure, article 2 of the Internal Rules of ANAC (2016) 

states that the agency is composed of a Board of Directors and its Assistance Bodies (advisory, 

office, ombudsmen, internal affairs, attorney and internal audit), Specific Bodies 

(superintendence) and Collegiate Bodies (advisory council and plenary).  

 That said, the problem this research addresses will focus on the Superintendence of 

Operational Standards (SPO). In addition, the research’s target relates to the macro-inspection 
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process, particularly when applied within the superintendence. The superintendence, in its turn, 

according to Article 31 of the Internal Rules of ANAC (2016), is responsible for the following: 

“IX - carry out supervisory actions with regard to continued surveillance, which 
involves permanent monitoring of the activities of the regulated entities in order to 
guide them, maintain the risk of operations within an acceptable level of civil aviation 
safety and improve the provision of services to the passenger;” (ANAC, 2016, p. 20, 
independent translation) 

 Thus, this research studies the surveillance missions in which SPO is responsible for 

certifying and supervising the operational scope in order to ensure minimum standards of safety 

and efficiency regarding operational safety.  

 The population subject to this research is composed of federal public servants stationed 

in ANAC’s Superintendence of Operational Standards (SPO). The sample consists of the 

servants that have attributions related to the SPO surveillance missions such as superintendence 

inspectors. This is a non-probabilistic sample for data’s availability convenience, obtained from 

the records of ANAC’s surveillance missions.  

3.3. Research Instruments 

 The instruments used in this research will be the Superintendence of Operational 

Standards’ mathematical model (SPO) proposed by Pinheiro (2018) and LP’s additional 

problems method proposed by Koltai and Tatay (2011). Thus, the latter will be applied in 

Pinheiro's model in order to find the correct sensitivity analysis.  

3.4. Mathematical Model of the Operational Standards Superintendence (SPO) 

 The mathematical model proposed by Pinheiro (2018) aims to optimize SPO’s 

designation of inspectors for surveillance missions. It considers offering the origins and 

demands of the destinations to allocate inspectors in order to meet mission requirements and 

minimize air transport costs.  

 Therefore, the model’s objective function (OF) aims to minimize the sum of the costs 

of displacement of inspectors for inspection missions, being subject to 16 sets of supply 

constraints (SC), 7 sets of demand constraints (DC) and 1 constraint of the designated inspector 

(DesigC), which represents the final allocated sum. Supply constraints indicate that the number 

of inspectors allocated must be less than or equal to the number of available inspectors per 

specific skill group (S) in each source. In addition, demand constraints indicate that the number 
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of inspectors allocated must be equal to the required number of inspectors for each specialty 

group (G) at each destination.  

 The model’s implementation included 16 origins, 69 targets, 7 specialty groups (G), 46 

specific skill sets of inspectors (H) and 16 specific auxiliary skill sets (S). Thus, the resolution 

of SPO’s mathematical model involved 68,448 variables and 18,404 constraints, resulting in 

the optimal designation of inspectors. However, when analyzing the sensitivity reports, it was 

observed that some supply and demand constraints had allowable increase intervals or 

allowable decrease equal to zero, which characterizes a degenerate solution.   

3.5. Sensitivity Analysis Method through Additional LP Problems 

 The authors Koltai and Tatay (2011) present that the standard form of a primal linear 

programming problem, which is dual, is: 

Primal: Max (cTx)          Ax ≤ b          c ≥ 0 [1] 

Dual: Min (bTy)           ATy ≥ c          y ≤ 0 [2] 

 Some additional LP problems need to be resolved to get actual values of shadow prices 

and sensitivity intervals. Figure 1 presents these problems. 

 
Figure 1 Additional LP problems  

Source: Koltai and Tatay, (2011, p. 394.) 

 

 These additional LP problems find a parameter’s maximum reduction value (how much 

must be subtracted from a parameter to obtain the lowest value of the validity interval) and 
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maximum increase (when it must be added to the parameter to obtain the highest value of the 

validity interval). For each coefficient of the objective function, one must calculate (3) and (4) 

and for each constraint, one must calculate (5), (6), (7) and (8) to obtain the values of maximum 

reduction, maximum increase and shadow prices. Hence, for a LP problem with Variable I and 

J constraints, 2I+6J one should calculate additional LP problems to obtain the interval 

information for each objective function coefficient (OFC) and right-hand side (RHS) element 

of the original problem. 

 Summary of notations: 

A Matrix of coefficients with elements aji (j=1, ..., J; i=1, ..., I) 

B Right-hand side (RHS) vector with elements bj (j=1, ..., J) 

C Objective function coefficient vector with elements ci (i=1, ..., I) 

x Primal problem variable with elements xi (i=1, ..., I) 

x* Primal problem optimal solution with elements xi∗ (i=1, ..., I)  

y Dual problem variable with elements yj (j=1, ..., J) 

y* Dual problem optimal solution with elements 𝑦𝑦𝑗𝑗∗ (j=1, ..., J) 

OF* Optimal value of the objective function 

𝑒𝑒𝑖𝑖 Unit vector with elements I and with 𝑒𝑒𝑖𝑖 = 1 e 𝑒𝑒𝑘𝑘 = 0 for all 𝑘𝑘 ≠ 𝑖𝑖. 

𝑒𝑒𝑗𝑗 Unit vector with elements J and with 𝑒𝑒𝑗𝑗 = 1 e 𝑒𝑒𝑘𝑘 = 0 for all 𝑘𝑘 ≠ 𝑗𝑗. 

𝛿𝛿 Disturbance of a parameter on the right side (RHS) 

𝑦𝑦𝑗𝑗− Left shadow price of an element on the right side (RHS) 𝑏𝑏𝑗𝑗 (𝛿𝛿 < 0) 

𝑦𝑦𝑗𝑗+ Right shadow price of an element on the right side (RHS) 𝑏𝑏𝑗𝑗 (𝛿𝛿 > 0) 

𝛾𝛾𝑖𝑖 Change in the coefficient of the objective function 𝑐𝑐𝑖𝑖 

𝛾𝛾𝑖𝑖− Viable reduction of the coefficient of the objective function 𝑐𝑐𝑖𝑖 

𝛾𝛾𝑖𝑖+ Viable increase in the coefficient of the objective function 𝑐𝑐𝑖𝑖 

𝜉𝜉𝑗𝑗 Right side element change (RHS) 𝑏𝑏𝑗𝑗 

n 𝜉𝜉𝑗𝑗− Viable decrease in 𝑏𝑏𝑗𝑗 belonging to the left shadow price 
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n 𝜉𝜉𝑗𝑗+ Viable increase in 𝑏𝑏𝑗𝑗 belonging to the left shadow price 

p 𝜉𝜉𝑗𝑗− Viable decrease in 𝑏𝑏𝑗𝑗 belonging to the right shadow price 

p 𝜉𝜉𝑗𝑗− Viable increase in 𝑏𝑏𝑗𝑗 belonging to the right shadow price 

4. RESULTS 

4.1. Adaptation of the SPO Mathematical Model 

 As previously stated, according to authors Koltai and Tatay (2011), for a LP problem 

with I variables and J constraints, 2I+6J additional LP problems should be calculated to obtain 

the sensitivity interval information for each OFC and RHS element of the original problem, in 

addition to the shadow prices. According to the results presented by Pinheiro (2018), it would 

take a total of 247320 (2*68448 + 6*18404) additional LP problems to find the correct 

information of the sensitivity analysis model. 

 Due to the large number of additional problems one has to solve, an alternative to 

decrease the number of problems would be to follow the suggestions put forward by authors 

Koltai and Tatay (2011) in order to exclude problems that do not need to be resolved. The first 

suggestion refers to mathematical analysis, which says that when right and left shadow prices 

are equal, there are only two additional problems one needs to solve (for maximum decrease 

and increase).  

 Therefore, to find the constraints with this feature, one should observe the validity 

interval of the shadow price in the sensitivity reports available to LP solvers. If the maximum 

decrease and maximum increase are other than zero the shadow prices on the right and left will 

be identical. The second suggestion refers to management analysis, in which the choice of 

additional LP problems to be calculated depends on the variables and constraints that the 

manager wants to better analyze before making a decision. 

 Therefrom, in order to exemplify the method of sensitivity analysis through additional 

LP problems, one solved them by considering only two origins, two destinations, a specialty 

group, a specific skill group and a specific skill auxiliary group. Some data from Scenario 1 

used by Pinheiro (2018) were applied for validation testing of the model, which are: 

a) Origins (i): Sao Paulo SBSP Airport (SP) and Confins SBCF Airport (MG); 
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b) Destinations (j): SBFL Airport of Florianopolis (SC) and SBUL airport of Uberlandia 

(MG); 

c) Specialty group (g): A; 

d) Specific skill group(h): 1A; 

e) Specific skill auxiliary group (s): 1. 

 In addition, Tables 2, 3 and 4 show the matrix of flight ticket costs between origins and 

destinations, the supply of inspectors in each origin and the demand of inspectors in each 

destination, respectively.  Regarding the supply, one considered that only 30% of the inspectors 

of each origin would be made available to meet the demands of these missions in order to make 

the model degenerate. 

Table 2: Airline ticket cost matrix 
Origin / Destination SBFL SBUL 

SBSP R$ 231 R$ 197 
SBCF R$ 345 R$ 483 

Source: Prepared by the author 

Table 3 Annual supply of inspectors 
Airport Total Supply - Group 1 Available Supply - Group 1 
SBSP 20 6 
SBCF 20 6 

Source: Prepared by the author 

Table 4 Annual demand for planned inspections 
Airport Total Demand - Group A 
SBFL 10 
SBUL 2 

Source: Prepared by the author 

 Considering that data, one can express Pinheiro’s (2018) model adaptation by the 

following equations: 

Objective Function: 

𝑀𝑀𝑀𝑀𝑀𝑀 231 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,1𝐴𝐴 + 197 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,1𝐴𝐴 

+345 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,1𝐴𝐴 + 483 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,1𝐴𝐴 

[3] 

Supply Constraints: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,1𝐴𝐴 + 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,1𝐴𝐴 ≤ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,1 [4] 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,1𝐴𝐴 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,1𝐴𝐴  ≤  𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,1 [5] 
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Demand Constraints: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,1𝐴𝐴 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,1𝐴𝐴 ≥ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝐴𝐴 [6] 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,1𝐴𝐴 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,1𝐴𝐴 ≥ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝐴𝐴 [7] 

4.2. Calculation of Additional LP Problems for the Adapted SPO Model 

 To calculate the additional LP problems of Pinheiro's adapted model, one first had to 

solve the primal and dual problems of the model. Consequently, both primal and dual problems, 

the optimal value of the objective function (OF*) and the optimal values of the decision 

variables were obtained (𝑥𝑥𝑖𝑖* e 𝑦𝑦𝑗𝑗*): 

OF* = 3.388 [8] 

𝑥𝑥1∗ = 4, 𝑥𝑥2∗ = 2, 𝑥𝑥3∗ = 6, 𝑥𝑥4∗ = 0 [9] 

𝑦𝑦1∗ = −114,𝑦𝑦2∗ = 0,𝑦𝑦3∗ = 345, 𝑦𝑦4∗ = 311 [10] 

 According to Moore and Weatherford (2005), when the number of positive variables in 

the optimal solution is lower than the number of constraints, the solution is degenerate. 

Accordingly, since SPO’s adapted model has four constraints it should also have four basic 

variables (i.e., different from zero). However, it only has three, which characterizes it as 

degenerate. For this reason, presented below are the calculations to obtain the correct values of 

the sensitivity analysis for the coefficients of the objective function (OFC) and for the 

constraints (RHS). 

4.3. Additional LP Issues for OFCs 

 After resolving the primal and dual, with the matrices values (𝐴𝐴𝑇𝑇𝑦𝑦, 𝑐𝑐, 𝑏𝑏𝑇𝑇𝑦𝑦) of the dual 

problem, the value of OF* and of 𝑥𝑥𝑖𝑖∗, the additional LP problems were calculated for the OFC 

of Pinheiro's adapted model, as shown in Figure 2. 

 
Figure 2 Additional LP problems for OFCs  

Source: Koltai and Tatay (2011) 
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 It can be seen in Figure 2 that the problems consider an 𝑒𝑒𝑖𝑖. This 𝑒𝑒𝑖𝑖 representes a unit 

vector that takes the value of 1 when “i” is the same as the one used for the calculation and 0 

when it is different. For instance, in the model adapted from the SPO, i = (1, 2, 3, 4). When 

calculating the intervals (maximal decrease and maximal increase) for i = 1, 𝑒𝑒1 = 1, 𝑒𝑒2 =

0, 𝑒𝑒3 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒4 = 0. It is also observed that the objective function of the problems is to 

maximize the value of 𝛾𝛾𝑖𝑖. The 𝛾𝛾𝑖𝑖 represents the most one can change the parameter so that the 

optimal solution of the variable remains the same. In this way, the maximal decrease and 

increase were calculated for each OFC of the model adapted from the SPO, resulting in a total 

of eight (2*4) additional problems. The sensitivity results obtained by Koltai and Tatay method 

(2011) are presented in Table 5.  

Table 5 OFC sensitivity results 
Koltai and Tatay Method (2011) 

 
i  

Variable (𝒙𝒙𝒊𝒊) 
Coefficient 

(OFC) 

Allowable 
Decrease 

(𝜸𝜸𝒊𝒊−) 

Allowable 
Increase 

(𝜸𝜸𝒊𝒊+) 
1 SPSP, SBFL, 1ª 231 172 0 
2 SPSP, SPUL, 1ª 197 0 172 
3 SPCF, SBFL, 1ª 345 0 172 
4 SBCF, SBUL, 1ª 483 172 0 

Source: Prepared by the author 

 In Table 5, the highlights in gray values refer to those in which the model does not 

present a solution or presents infinite solutions, according to the results found with Excel 

Solver. For allowable decreases in 𝑥𝑥2 e 𝑥𝑥3 and the allowable increases of 𝑥𝑥1 e 𝑥𝑥4, Solver results 

showed that it was not possible to find a viable solution for the set of constraints presented. For 

the allowable decrease of 𝑥𝑥4 and the allowable increases of 𝑥𝑥2 e 𝑥𝑥3, Solver results showed that 

the 'Define cell' values did not converge, that is, with each iteration it found a different value 

that improved the objective function, so it found himself far from a final value. Because of 

these errors, these results are not reliable.  

 One could solve the primal problem due to the errors. Additionally, in order to test the 

validity of the intervals obtained by the Koltai and Tatay method (2011) one could solve it by 

reducing and increasing the OFCs based on the intervals found, with the intention of finding 

the real limits. The results obtained are shown in Table 6. 
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Table 6 Final sensitivity results of OFC 
Actual limits obtained after testing the intervals 

 
i Variable (𝒙𝒙𝒊𝒊) 

Coefficient 
(OFC) 

Allowable 
Decrease 

(𝜸𝜸𝒊𝒊−) 

Allowable 
Increase 

(𝜸𝜸𝒊𝒊+) 
1 SPSP, SBFL, 1ª 231 172 ∞ 
2 SPSP, SPUL, 1A  197 ∞ 172 
3 SPCF, SBFL, 1A  345 ∞ 172 
4 SBCF, SBUL, 1A  483 171 ∞ 

Source: Prepared by the author 

 Table 6 shows the actual sensitivity limits of Pinheiro's adapted model coefficients, that 

is, even if each OFC vary within the interval presented the optimal solution of the variable will 

not be changed. However, this is only true if one OFC is changed and the others remain 

constant. When comparing the results shown in Tables 5 and 6, one observes that the allowable 

decrease 𝛾𝛾2−, 𝛾𝛾3− 𝑒𝑒 𝛾𝛾4− and the allowable increase 𝛾𝛾1+ 𝑒𝑒 𝛾𝛾4+ have changed (highlighted in gray). 

These values are the same as those that presented an error in to the results found with Excel 

Solver. That said, Koltai and Tatay method (2011) proved effective in finding the correct 

sensitivity intervals of OFCs. 

4.4. Additional LP Issues for RHS 

 After calculating the sensitivity intervals of the OFCs, the additional LP problems were 

calculated for Pinheiro's adapted model RHS, according to Figure 3. For that, the matrix values 

(𝐴𝐴𝐴𝐴, 𝑏𝑏, 𝑐𝑐𝑇𝑇𝑥𝑥) of the primal problem, the value of OF* and the 𝑦𝑦𝑖𝑖∗ were used.  

 
Figure 3 Additional PL problems for RHS  

Source: Koltai and Tatay, (2011) 

 One notices that the problems presented in Figure 3 consider a disturbance 𝛿𝛿 < 0 𝑒𝑒 𝛿𝛿 >

0 in order to observe how the model behaves if its parameters suffer a small reduction or a 

small increase. Thus, for Pinheiro's adapted model the disturbances -1 and 1 were considered. 
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However, before calculating the sensitivity intervals of RHS, the dual problem was used to 

recalculate each shadow price, considering these very disturbances in order to find the right 

shadow prices (𝑦𝑦𝑗𝑗−) and left (𝑦𝑦𝑗𝑗+). Hence, for each 𝑦𝑦𝑗𝑗 the dual was solved in consideration of 

𝑏𝑏𝑗𝑗 − 1 𝑒𝑒 𝑏𝑏𝑗𝑗 + 1, performing a total of eight (2*4) calculations, with the following values of yj− 

e yj+: 

y1− = y1+ = −114 [11] 

y2− = y2+ = 0 [12] 

y3− = y3+ = 345 [13] 

y4− = y4+ = 311 [14] 

 It is observed that the results obtained for all yj− e yj+ were equal to the optimal values 

that had already been found in the first resolution of the dual. Thus, in the case of Pinheiro's 

adapted model the shadow prices for both decrease and increase are the same, so one needs to 

solve only two additional LP problems to find the sensitivity intervals, since the results will be 

the same. If the shadow prices were different, four additional LP problems would have to be 

calculated, and problems (5) and (6) would consider the value of yj− and the disturbance δ < 0, 

and problems (7) and (8) would consider the value of yj+ and the disturbance δ > 0.  

 Therefrom, according to Figure 3, the problems consider a ej, which is a unit vector 

equal to that used in OFC problems. Additionally, the objective function is to maximize the 

value of εj, which represents the most the parameter can be changed so that the shadow price 

related to that constraint remains the same. Thereon, the maximum decrease and increase 

values were calculated for each RHS, and the total number of 8 (2*4) additional problems. The 

sensitivity results obtained by Koltai and Tatay method (2011) are presented in Table 7.  

Table 7 RHS sensitivity results 
Koltai and Tatay Method (2011) 

 
j Variable 

(𝐲𝐲𝐣𝐣) 
Constraint 

(RHS) 

Shadow 
price 
(𝐲𝐲𝐣𝐣−) 

Allowable 
Decrease 

(𝐧𝐧𝐧𝐧𝐣𝐣−) 

Allowable 
Increase 

(𝐧𝐧𝐧𝐧𝐣𝐣+) 
1 y1 6 -114 0 6 
2 y2 6 0 0 0 
3 y3 10 345 6 0 
4 y4 12 311 2 0 

Source: Prepared by the author 
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 In Table 7, in light of the allowable increase value y2, highlighted in gray, Solver result 

showed that the 'Define cell' values did not converge. Thus, as seen in some OFC sensitivity 

interval values, one cannot rely on these results.  

 To solve this error using Koltai and Tatay (2011) method, one could reduce and increase 

the OFCs (which are the RHS of the primal problem, according to the relationship between the 

primal and the dual) to solve the dual problem based on the intervals found, with the intention 

of finding the real limits. The results obtained are shown in Table 8. 

Table 8 Final sensitivity results of the RHS 
Actual limits obtained after testing the intervals 

 
j Variable 

(𝐲𝐲𝐣𝐣) 
Constraint 

(RHS) 

Shadow 
price 
(𝐲𝐲𝐣𝐣−) 

Allowable 
Decrease 

(𝐧𝐧𝐧𝐧𝐣𝐣−) 

Allowable 
Increase 

(𝐧𝐧𝐧𝐧𝐣𝐣+) 
1 y1 6 -114 0 5 
2 y2 6 0 0 ∞ 
3 y3 10 345 5 0 
4 y4 12 311 2   0 

Source: Prepared by the author 

 Table 8 shows the constraints’ real sensitivity limits of Pinheiro's adapted model. These 

results show the interval in which each RHS can vary without changing the shadow price 

related to it. However, this is only true if one RHS changes and the others remain constant.  

 In comparison to the results shown in Tables 7 and 8, one can observe that only the 

allowable increases nε1+ e nε2+ and the allowable decrease nε3− changed. Since nε2+ presented 

an error in Solver's solution, it was possibly to find its true value by testing it. On the other 

hand, the Koltai and Tatay method (2011) found the value of six for both nε1+ and nε3−, but 

when one added or deducted the same amount (6) iny1 and y3, respectively, different shadow 

prices were found.  

 Regarding y1, by increasing its OFC by six and solving the problem more than once, 

Solver returned the optimal value of y1 as -114 and 0, with the same optimal solution of R$ 

2704. Similarly, reducing the OFC of y3 by six and solving the problem more than once, Solver 

returned the optimal value of y3 as 345 and 231, with the same optimal solution of R$ 1318. 

This indicates that with these changes the additional problems of y1 e y3 presented multiple 

optimal solutions, i.e., different values for the decision variables reached the same optimal 

value in the objective function. 

 Because of the multiple solutions, it was more reliable to change the sensitivity limits 

nε1+ and nε3− to five, as it guarantees the shadow price will remain the same with the parameter 
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change, though the result of the Koltai and Tatay (2011) method was not incorrect. Thus, the 

Koltai and Tatay method (2011) was also effective in finding the valid sensitivity intervals of 

RHS. 

5. DISCUSSION 

 The analysis of the results made it possible to observe some of the ways to identify 

degenerate solutions presented in the Theoretical Background, such as: 

a) The optimal solution had a smaller number of positive variables than the number of 

restrictions; 

b) The permitted reduction and permitted increase values for some restrictions and shadow 

prices were equal to zero. 

 These characteristics confirm the fact that the Pinheiro's adapted model presents 

degenerate solutions. Therefore, the correct sensitivity analysis of the model was found through 

the application of the Koltai and Tatay method (2011) along with small corrections. Hence, the 

final sensitivity results of the OFC and RHS obtained in this study and the results presented by 

the Excel Solver sensitivity report is compared in Tables 9 and 10 below, in order to identify 

the differences and possible problems that could occur if the manager did not pay attention to 

this. 

Table 9 Comparison of OFC sensitivity results  

 
 
i 

 
 

Variable (𝐱𝐱𝐢𝐢) 

 
 

Coefficient 
(OFC) 

Actual limits obtained after 
testing the intervals Excel Solver 

Allowable 
decrease(𝛄𝛄𝐢𝐢−) 

Allowable 
increase 

(𝛄𝛄𝐢𝐢+) 

Allowable 
decrease 

Allowable 
increase 

1 SPSP, SBFL, 1ª 231 172 ∞ 172 114 
2 SPSP, SPUL, 1A  197 ∞ 172 ∞ 172 
3 SPCF, SBFL, 1A  345 ∞ 172 114 172 
4 SBCF, SBUL, 1A  483 171 ∞ 172 ∞ 

Source: Prepared by the author 

 Table 9 values highlighted in gray represent those that presented differences. 

Additionally, Solver presented a report with three incorrect interval values for three different 

variables. Regarding x1 e x3, when using the values of +114 or –114, the optimal solution is 

not affected, for the actual value of the limit is infinite. However, the decisions would be limited 

to these values where it could have considered higher values, which would also maintain the 

optimal solution. On the other hand, as to x4, if the Manager used the value –172, the optimal 
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solution would be affected. In that event, the Manager could make a non-optimal decision by 

not noticing the problem.  

Table 10 Comparison of RHS sensitivity results 

 
 
j 

 
 

Variable 
(𝐲𝐲𝐣𝐣) 

 
 

Constraint 
(RHS) 

Actual limits obtained after testing 
the intervals Solver do Excel 

Shadow 
price 
(𝐲𝐲𝐣𝐣−) 

Allowable 
decrease 

(𝐧𝐧𝐧𝐧𝐣𝐣−) 

Allowable 
increase 

(𝐧𝐧𝐧𝐧𝐣𝐣+) 

Shadow 
price 

 

Allowable 
decrease 

Allowable 
increase 

1 y1 6 -114 0 5 -114 0 6 
2 y2 6 0 0 ∞ 0 0 ∞ 
3 y3 10 345 5 0 345 6 0 
4 y4 12 311 2 0 311 2 0 

Source: Prepared by the author 

 Table 10 values highlighted in gray represent those that presented differences and only 

the values of nε1+ e nε3− changed. These values were equivalent to 6 in the result obtained by 

the Koltai and Tatay method (2011 and they have been set to 5 since the result generated 

multiple solutions. Consequently, the results would be the same should the change be 

disregarded and the sensitivity report made available by Solver for the constraints did not 

present errors in this case. Therefore, if the Manager had used it, he would have had no 

problems.  

 Finally, one could realize that 24 calculations were performed to obtain the correct 

sensitivity analysis values for Pinheiro's adapted. This value is lower than predicted, as Koltai 

and Tatay (2011) stated that for a problem of LP with I variables and J constraints, 2I+6J 

additional problems should be calculated. Accordingly, for the case of SPO that has 4 variables 

and 4 constraints, 32 (2*4+6*4) additional problems should have been calculated. The reason 

for this difference was due to left and right shadow prices values being equal. However, 

contrarily to what presented the authors, this was only observed later on, in detriment of it 

being detected in Solver’s sensitivity report as to the shadow prices validity intervals.  

6. CONCLUSION AND RECOMMENDATION 

 This research sought to exemplify how sensitivity analysis can be performed in the 

mathematical models of ANAC, given its degenerate characteristic. One can conclude that the 

objective was achieved by applying the Koltai and Tatay method (2011) in the ANAC model 

proposed by Pinheiro (2018).  

 This case study allowed the application of technical knowledge to a real problem in a 

public organization, making it possible to evidence errors in sensitivity analysis that could 
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cause problems in an inattentive decision-making process. In addition, by applying the method, 

it is possible to verify its technical and practical feasibility, confirming its usage in other models 

that suffer from degeneration, due to its generic formulation. Thereupon, it contributes both to 

the Academy and to the market by gathering studies and applications on the subject, serving as 

a reference for future studies or for professionals who are dealing with degenerate problems 

and need to perform a more assertive sensitivity analysis.  

 However, one difficulty refers to the amount of additional calculations needed to 

validate sensitivity analysis and its non-automated nature. One can observe that though the 

model used in the study was small it still took more than twenty additional problems to 

determine the sensitivity intervals. Therefore, in a larger manually performed model the 

application of the same process would be very long and more exposed to errors. Thus, it would 

be ideal that the Software provides all types of sensitivity analysis. Since commercial packages 

still do not implement it, the main suggestion is to include ways to automate the sensitivity 

analysis in future works. 

 Finally, for similar studies, there should be a focus on sensitivity analysis under 

degeneration in which more than one parameter changes simultaneously. This is because the 

analyzed method considers one change at a time for decision makers deal with changes in 

several variables at the same time in real situations. 
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