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ABSTRACT 

This paper proposes the optimal policies for a fuzzy inventory model considering 

the holding cost and ordering cost as continuous functions of time. Shortages are 

allowed and partially backlogged. The demand rate is assumed in such to be 

linearly dependent on time during on-hand inventory, while during the shortage 

period, it remains constant. The inventory problem is formulated in crisp 

environment. Considering the demand rate, holding cost and ordering cost as 

trapezoidal fuzzy numbers, the proposed problem is transformed into fuzzy 

model. For this fuzzy model, the signed distance method of defuzzification is 

applied to determine the average total cost (ATC) in fuzzy environment. The 

objective is to optimize the ATC and the order quantity. One solved example is 

provided in order to show the applicability of the proposed model. The convexity 

of the cost function is verified with the help of 3D-graph. 

Keywords: Inventory Model; Partial Backlogging; Time Dependent Demand 

Rate; Signed Distance Method. 

Glossary 

TrFN: Trapezoidal Fuzzy Number 
EOQ: Economic Order Quantity 
EPQ: Economic Production Quantity 

ATC: Average Total Cost 
pdf: Probability Density Function 
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1. INTRODUCTION 

 In inventory problems, the ordering cost is associated with ordering and receiving an 

order, and normally possesses the components- clerical/labor costs of processing orders, 

inspection and return of poor quality products, transport costs, handling costs. In practical life 

situations, all the above cost components depend upon time. Therefore, to consider the time 

dependant ordering cost will undoubtedly be a very close approximation to real case inventory 

problems.  

 In literature, many inventory models with deteriorating items were studied by a large 

number of researchers (Dave & Patel, 1981; Abad, 1996; Chung & Ting, 1993; Goyal & Giri, 

2001; Shah & Shukla, 2009). The optimal pricing and lot-sizing was proposed assuming the 

conditions of perishability and partial backordering (Abad, 1996). The concept of a reseller 

under partial backlogging was presented to determine the optimal price and order-size for the 

inventory model (Abad, 2001). The deterioration may be represented by a random variable 

with a known probability distribution function (pdf).  

 An EOQ model for items with weibull distribution deterioration was presented with 

shortages and trended demand (Jalan; Giri; Chaudhary, 1996). Inventory models with ramp 

type demand rate, partial backlogging and Weibull deterioration rate was presented (Skouri & 

Konstantaras; Ganas, 2009). The ramp-type demand rate was studied by large number of 

researchers. An EOQ inventory model for Weibull distributed deteriorating items was proposed 

under ramp type demand and shortages (Mandal, 2010). 

        In the real life business problems, the demand rate of any item is always variable. Several 

inventory models have been established by considering time-dependent demand. The time 

dependent demand was considered in some inventory models (Dave & Patel, 1981; Chung & 

Ting, 1993; Wu & Cheng, 2005; Mandal, 2010; Dutta & Kumar, 2015a). A deteriorating 

inventory model for (T, si)-policy was studied for time proportional demand function (Dave; 

Patel, 1981). By considering a linear trend in demand, a heuristic was studied for replenishment 

of deteriorating items for an inventory problem (Chung & Ting, 1993). By introducing the 

inflation when supplier credit linked to order quantity, an inventory model was proposed for 

time-dependent demand rate (Tripathi, 2011).   

        In inventory models, one important factor is shortages. In literature, two types of shortages 

are considered: partial backlogging and full backing. An EOQ model was proposed for 

deteriorating items with time varying demand and partial backlogging (CHANG; DYE, 1999). 
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By considering the partial backlogging shortages, an inventory model for deteriorating items 

with exponential declining demand was formulated (Wu & Cheng, 2005). A comparison 

between two pricing and lot-sizing models with partial backlogging and deteriorated items was 

proposed by (Teng, Ouyang & Chen, 2007). A deteriorating inventory model for time 

dependent demand and holding cost with partial backlogging was introduced by (Mishra & 

Singh, 2011).  

 The determination of optimal selling price as well as the lot size was presented for a 

varying rate of deterioration and exponential partial backlogging (Dye, 2007a). Afterwards, the 

joint pricing and ordering was proposed for a deteriorating inventory with partial backlogging 

(Dye, 2007b). In several cases, the demand rate depends on the selling price of the items. 

Assuming the price dependent demand rate, an inventory model was presented for deteriorating 

items and time varying holding cost (Roy, 2008).  

 In inventory models, the concept of two-level trade credit was also introduced. An EOQ 

model with non instantaneous receipt and exponential deteriorating item was introduced under 

two-level trade credit (Liao, 2008). A deteriorating inventory model for waiting time partial 

backlogging was introduced by (Shah & Shukla, 2009). An inventory model was proposed by 

introducing the generalized type demand, deterioration and backorder rates (Hung, 2011). By 

introducing the multiple-market demand, an optimal production-inventory model was 

presented for deteriorating items (He, Wang & Lai, 2010).   

 In general, the parameters for holding cost, demand, ordering cost, deterioration rate, 

production cost and idle time cost are not specifically known. Due to uncertainty, we may 

assume the representation of some or all the parameters by fuzzy sets. The concept of fuzzy 

sets was introduced first time by (Zadeh, 1965). Some applications of fuzzy set theory to 

mathematical programming as well supply chain management were studied by  (Zimmermann, 

1985), (Wang & Shu, 2005).  

 The (Q, r) inventory model with backorder discount in fuzzy demand and fuzzy 

ordering cost was proposed by (Ho, et al., 2007). The fuzzy setup cost as well as fuzzy ordering 

cost was introduced for determining the single-vender and single-buyer inventory strategy 

(Yang, Tu & Wang, 2007). An interval-type uncertainty was introduced in inventory 

parameters. An interval number approach was applied to a partial backlogging inventory model 

for deteriorating items with time-varying demand and holding cost (Dutta & Kumar, 2015a).  
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 The global criteria method was suggested to solve the inventory model with variable 

holding cost and partial backlogging under interval uncertainty (Kumar & Keerthika, 2018). 

Uncertainty of neutrosophic type was also proposed. The optimal value of neutrosophic 

complex programming problem was determined by using lexicographic order (Khalifa, Kumar 

& Smarandache, 2020).  

 The concepts of parabolic holding cost with salvage value were also introduced. An 

inventory planning problem was presented for time-varying linear demand and parabolic 

holding cost with salvage value (Kumar, 2019). Some applications of optimizations techniques 

were also suggested to various fields. In the field of a micro-company of the graphic sector, an 

application of a mathematical model for cost minimization was studied (Rodrigues, Marins & 

Souza, 2017).  

 In the field of inventory, an application of fuzzy goal programming approach was 

implemented to multi- objective linear fractional inventory model (Dutta & Kumar, 2015b). In 

joint inventory-production problems, the production depends on demand. Moreover, the 

demand depends on the number of population of customers, selling price as well as 

advertisement. A fuzzy EPQ model for non-instantaneous deteriorating items was presented, 

where the production rate depends on demand which is proportional to population, selling price 

as well as advertisement (Biswas & Islam, 2019). 

1.1. Motivation:  

      Several researchers studied the inventory problem with constant deterioration, time-

sensitive demand and holding cost (Tripathi, 2011; Dutta & Kumar, 2015a; Kumar & 

Keerthika, 2018), etc. For instance, Dutta and Kumar (2015a) formulated such a model, and 

applied the interval number method to solve it.  Kumar and Keerthika (2018) also studied a 

similar model using uncertainty in model variables and parameters. They did not consider the 

trapezoidal fuzzy number to deal the uncertainties. Also, the ordering cost may be considered 

as time dependent along with the time-sensitive holding cost.  

       In present research paper, we propose a fuzzy inventory model with shortages. We consider 

the holding and ordering costs as continuous functions of time. Our objective is to determine 

the optimal control policies for the proposed model. 

1.2. Main Contribution:  

The main contributions of the present paper are summarized below:  
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• Introducing the time-sensitive holding cost as well as ordering cost.  

• Applying the solution method based on defuzzification of trapezoidal fuzzy 

numbers.    

• Convexity is justified with the help of a 3D-graph.. 

• Based on the results, some managerial implications are proposed. 

       The remaining outlay of the paper is organized as follows. In section 2, we describe some 

definitions. In section 3, the problem description and formulation is provided. In section 4, a 

fuzzy mathematical model of the proposed problem is developed. In section 5, the solution 

procedure is described. In section 6, a solved example is given to explain the procedure. In 

section 7, some special cases are discussed. In section 8, managerial implications and 

limitations are explored. In the last, the conclusions and future directions are reported in section 

9.  

2. SOME DEFINITIONS 

• Definition 1: (Dutta & Kumar, 2015b) 

         A Trapezoidal Fuzzy Number (TrFN), denoted by 𝐴̃𝐴 = (𝑎𝑎1,𝑎𝑎2,𝑎𝑎3,𝑎𝑎4) is defined by the 

membership function 𝜇𝜇𝐴𝐴� as: 

                                             𝜇𝜇𝐴𝐴�(𝑥𝑥)  = 

⎩
⎪
⎨

⎪
⎧  L(x) =  𝑥𝑥−𝑎𝑎1

𝑎𝑎2−𝑎𝑎1
  ,    when  𝑎𝑎1 ≤ x ≤ 𝑎𝑎2 

1 ,                           when  𝑎𝑎2 ≤ x ≤ 𝑎𝑎3
R(x) =    𝑎𝑎4−𝑥𝑥 

𝑎𝑎4−𝑎𝑎3
 , when  𝑎𝑎3 ≤ x ≤ 𝑎𝑎4

0 ,                                          otherwise.

 

• Definition 2: (Dutta & Kumar, 2015b) 

         A fuzzy set is called in LR-Form, if there exist reference functions L (for left), R (for 

right), and scalars m > 0 and n > 0 with membership function  

                               𝜇𝜇𝐴𝐴�(𝑥𝑥) = 

⎩
⎨

⎧ L �σ−x
m
� ,          for x ≤ σ

  1,                for  σ ≤ x ≤ γ
R �x−γ

n
� ,            for x ≥  γ.

 

Where 𝜎𝜎 is a real number called the mean value of 𝐴̂𝐴, m and n are called the left and right 

spreads, respectively. The functions L and R map 𝑅𝑅+ → [0, 1], and are decreasing. A LR-Type 

fuzzy number can be represented as 𝐴̃𝐴 = (𝜎𝜎, 𝛾𝛾,𝑚𝑚,𝑛𝑛)𝐿𝐿𝐿𝐿. 
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• Definition 3: (Dutta & Kumar, 2015b) 

        The fuzzy arithmetic operations under the functional principle for trapezoidal fuzzy 

numbers are described below. Let 𝐴̃𝐴 = (𝑎𝑎1,𝑎𝑎2,𝑎𝑎3,𝑎𝑎4) 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵� = (𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3, 𝑏𝑏4) be two 

trapezoidal fuzzy numbers, and let k be any scalar. Then arithmetical operations are defined 

as: 

(i) Fuzzy Addition:  𝐴̃𝐴⨁𝐵𝐵�  = (𝑎𝑎1 + 𝑏𝑏1,𝑎𝑎2 + 𝑏𝑏2,𝑎𝑎3 + 𝑏𝑏3, 𝑎𝑎4 + 𝑏𝑏4). 

(ii) Fuzzy Multiplication:  𝐴̃𝐴⨂𝐵𝐵�  = (𝑎𝑎1𝑏𝑏1,𝑎𝑎2𝑏𝑏2,𝑎𝑎3𝑏𝑏3, 𝑎𝑎4𝑏𝑏4). 

(iii) Fuzzy Subtraction:  𝐴̃𝐴 ⊝ 𝐵𝐵�  = (𝑎𝑎1 − 𝑏𝑏4,𝑎𝑎2 − 𝑏𝑏3,𝑎𝑎3 − 𝑏𝑏2, 𝑎𝑎4 − 𝑏𝑏1) 

(iv) Fuzzy Division:  𝐴̃𝐴 ø𝐵𝐵�  = ( 𝑎𝑎1
𝑏𝑏4

, 𝑎𝑎2
𝑏𝑏3

, 𝑎𝑎3
𝑏𝑏2

, 𝑎𝑎4
𝑏𝑏1

 ) 

(v) Fuzzy Scalar Multiplication:  k⨂𝐴̃𝐴 = �
(𝑘𝑘𝑘𝑘1,𝑘𝑘𝑘𝑘2, 𝑘𝑘𝑘𝑘3, 𝑘𝑘𝑎𝑎4),   𝑘𝑘 ≥ 0
(𝑘𝑘𝑘𝑘4,𝑘𝑘𝑘𝑘3,𝑘𝑘𝑘𝑘2,𝑘𝑘𝑎𝑎1),   𝑘𝑘 < 0  

• Definition 4: (Dutta & Kumar, 2015b) 

         Let 𝐴̃𝐴 be a fuzzy set defined on R. Then the Signed Distance of 𝐴̃𝐴 is defined as: 

                   𝑑𝑑(𝐴̃𝐴, 0) = 1
2
 ∫ [𝐴𝐴𝐿𝐿(𝛼𝛼)+ 𝐴𝐴𝑅𝑅(𝛼𝛼)]1
0  dα            

where 𝐴𝐴𝛼𝛼 = [𝐴𝐴𝐿𝐿(𝛼𝛼), 𝐴𝐴𝑅𝑅(𝛼𝛼)] = [a + ( b − a)α, d − (d − c)α],  α ∈[0, 1], is α − cut of fuzzy 

set 𝐴̃𝐴, which is a close interval.  

 

3. PROBLEM DESCRIPTION AND FORMULATION 

 The main objective of this paper is to minimize the total cost of the proposed inventory 

model, that possesses the following features: (i) the demand rate is a time dependent function, 

(ii) the holding cost is an increasing linear function of the storage time, and (iii) the ordering 

cost depends on the total time elapsed up to the beginning of each cycle. 

3.1. Notations 

The following notations are used in this paper. 

𝑐𝑐1(t)      ∶ Holding cost per unit per time unit (Time dependant). 

𝑐𝑐2           ∶ Purchase cost per unit 

𝑐𝑐3           ∶ Shortage cost per unit per time unit 
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𝑐𝑐4           ∶ Cost of lost sales per unit 

θ           : Deterioration rate 

𝑇𝑇           : Cycle time (decision variable)   

𝑡𝑡1           ∶ Time at which shortage starts, i.e., inventory exhausted time, (decision 

variable), 0 ≤ 𝑡𝑡1 ≤ 𝑇𝑇 

𝑇𝑇 − 𝑡𝑡1   ∶ Length of waiting time 

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚      : Maximum inventory level during a cycle of length T  

𝐷𝐷𝐵𝐵         : Maximum amount of demand backlogged during a cycle of length T  

𝑄𝑄           : (= 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐷𝐷𝐵𝐵) order quantity during a cycle of length T 

                   𝐶𝐶𝑜𝑜(𝑡𝑡)        : Time dependant ordering cost per order. 

𝐶𝐶𝐻𝐻          : Inventory holding cost per cycle 

𝐶𝐶𝐷𝐷          : Deterioration cost per cycle 

                   𝐶𝐶𝑆𝑆         : Shortage cost per cycle 

                   𝐶𝐶𝐿𝐿          : Lost sales cost per cycle 

                   C(𝑡𝑡1, T)  : Average total cost per time unit per cycle 

𝑋𝑋∗         : Optimal value of X, where X is any variable or parameter. 

𝐼𝐼(𝑡𝑡)        : Inventory level at time, 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇 

𝐼𝐼1(𝑡𝑡)       : Inventory level during the period [0, 𝑡𝑡1] 

𝐼𝐼2(𝑡𝑡)       : Inventory level during the period [𝑡𝑡1, 𝑇𝑇] 

3.2. Assumptions 

The proposed model is based on the following assumptions: 

I. Inventory system involves only one item. 

II. Planning horizon is infinite. Each replenishment cycle is of same length, T. Only one 

order is placed for the period [0, T]. No lead time between placing an order and arrival 

of the order.  

III. Deteriorating rate, θ (0 < θ < 1), is constant and occurs as soon as items are received 

into inventory. There is no replacement or repair of deteriorated units. 
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IV. Demand during the on-hand inventory, the demand rate, R(t) increases linearly with 

respect to time, and during the shortages period, the demand rate becomes constant:                    

R(t) = �𝑎𝑎𝑎𝑎, when  I(t) > 0  
𝑏𝑏, when  I(t) ≤ 0, , where 𝑎𝑎, 𝑏𝑏 > 0 are arbitrary  constants.  

V. Shortages are allowed and partially backlogged with backordered rate 

B(t) =  1
1+ δ (T−t)

 ,                                                          

 The backlogging parameter δ>0, and t1 ≤ t ≤ T. For the special case with δ = 0, B(t) 

= 1, that is, the fully  

backlogged case. In the proposed model, we assume δ<1 to approximate by Maclaurin’s series. 

VI. Holding cost, 𝑐𝑐1(𝑡𝑡) per unit per time unit is time dependant and assume its function 

form is 

𝑐𝑐1(t) = ht, where h > 0 is the holding cost scale parameter. 

VII. The ordering cost, 𝐶𝐶𝑜𝑜(𝑡𝑡) depends on the total time elapsed up to the beginning of each 

cycle and is taken as 

                 𝐶𝐶𝑜𝑜(𝑡𝑡) = 𝑘𝑘1𝑡𝑡1 + 𝑘𝑘2 

                      where 0 ≤  𝑡𝑡1  ≤  𝑇𝑇,  𝑘𝑘1 ≥ 0,  and  𝑘𝑘2 > 0 is the ordering cost at time zero. 

3.3. MATHEMATICAL MODEL 

 The inventory is replenished at time t = 0, when the inventory level is at its maximum, 

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚. Afterwards, the inventory level begins to decrease during the period [0, 𝑡𝑡1], and 

eventually becomes zero, when t = 𝑡𝑡1. Further, during the period [𝑡𝑡1, T], there is partially 

backlogging. The governing differential equations are:  

             𝑑𝑑𝐼𝐼1(𝑡𝑡) 
𝑑𝑑𝑑𝑑

 + θ. 𝐼𝐼1(𝑡𝑡) = − 𝑎𝑎𝑎𝑎,   0 ≤ t ≤  𝑡𝑡1                                                                                   (1) 

            𝑑𝑑𝐼𝐼2(𝑡𝑡) 
𝑑𝑑𝑑𝑑

 = −𝑏𝑏
1+ δ (T−t)

 ,             𝑡𝑡1≤ t ≤ T                                                                                     (2) 

 With boundary conditions: 
𝐼𝐼1(𝑡𝑡)  =  𝐼𝐼2(𝑡𝑡)  =  0 𝑎𝑎𝑎𝑎 𝑡𝑡 =  𝑡𝑡1,

   𝐼𝐼1(𝑡𝑡)  =  𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎 𝑡𝑡 =  0                 �                                                                                    

 For  I(t) > 0, the inventory level decreases due to the demand as well as deterioration, 

and the inventory level is governed by (1). Using the boundary conditions, the solution of (1) 

is given by 
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             𝐼𝐼1(𝑡𝑡) = −𝑎𝑎
θ
 [(t−1

θ
) −(𝑡𝑡1 −

1
θ
)𝑒𝑒θ (𝑡𝑡1−𝑡𝑡)] ,  0 ≤ t ≤ 𝑡𝑡1                                                      (3) 

 Therefore, the maximum level of the proposed inventory model, for each cycle, can be 

written as follows:    

              𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚= 𝐼𝐼1(0) = 𝑎𝑎
θ

[ 1
θ

 + (𝑡𝑡1 −
1
θ
)𝑒𝑒θ 𝑡𝑡1]                                                                           (4)                                  

 For  I(t) ≤ 0, the inventory level is sensitive with the demand. When the demand is 

more, the inventory level starts to decreases, and vice-versa. However, we assume that a 

fraction of demand is backlogged. The level of the inventory is governed by (2). Applying the 

boundary conditions, the solution of (2) can be written as: 

              𝐼𝐼2(𝑡𝑡) = 𝑏𝑏
δ
 [log{1+ δ(T− t)} − log{1+ δ(T− 𝑡𝑡1)}],  𝑡𝑡1≤ t ≤ T                                        (5) 

 As per the calculations illustrated in Appendix-A, we can write the order quantity as 

follows:  

             Q = 𝑎𝑎 �𝑡𝑡1
2

2
� + b[T− 𝑡𝑡1 − δ(T− 𝑡𝑡1)2

2
]                                                                                       (6) 

 Hence, the average total cost per unit time per cycle is   

            ⇒ C(𝑡𝑡1, T) =  1
T
 {𝑘𝑘1𝑡𝑡1 + 𝑘𝑘2 + 𝑎𝑎ℎ

6θ
 𝑡𝑡13 +  𝑐𝑐2𝑎𝑎

2
θ 𝑡𝑡13+ b(c3+δc4

δ
)[T − t1 −

log [1+δ(T− t1)]
δ

]}                         

 Applying the Macraurin series, and ignoring higher power terms, we get 

           ⇒C(𝑡𝑡1,T) = 1
𝑇𝑇

 {𝑡𝑡13( 𝑎𝑎ℎ
6θ

 +   𝑐𝑐2𝑎𝑎θ
2

 )  +  𝑏𝑏
2

(𝑐𝑐3 + δ𝑐𝑐4)(𝑇𝑇 − 𝑡𝑡1)2  +  𝑘𝑘1𝑡𝑡1 + 𝑘𝑘2}                (7)                      

4. FUZZY MATHEMATICAL MODEL 

 In real-life situations, the decision maker has to face the ambiguity in model parameters. 

In this research paper, to face with the fuzzy type uncertainty and ambiguity in parameters of 

the inventory model, we consider the demand rate, holding cost and ordering cost as 

represented by trapezoidal fuzzy numbers (TrFN) as follows: 

  

𝑎𝑎� = (a1, a2, a3, a4)
𝑏𝑏� = (b1, b2, b3, b4)
ℎ� = (h1, h2, h3, h4)

 𝑘𝑘�1 = (𝑘𝑘11, 𝑘𝑘12, 𝑘𝑘13, 𝑘𝑘14)
𝑘𝑘�2 = (𝑘𝑘21, 𝑘𝑘22, 𝑘𝑘23, 𝑘𝑘24)⎦

⎥
⎥
⎥
⎥
⎥

                                                               (8)                             

 Therefore, we can the average total cost function per unit time in fuzzy environment 

case, as follows:  
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 𝐶̃𝐶(𝑡𝑡1,𝑇𝑇) = 1
𝑇𝑇

{𝑡𝑡13( 𝑎𝑎�ℎ
�

6θ
 +   𝑐𝑐2𝑎𝑎�θ

2
 ) + 𝑏𝑏�

2
(𝑐𝑐3 + δ𝑐𝑐4)(𝑇𝑇 − 𝑡𝑡1)2  +  𝑘𝑘�1𝑡𝑡1 +  𝑘𝑘�2} 

                 = 1
𝑇𝑇

{𝑡𝑡13[ 1
6θ

(𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3,𝑎𝑎4)(ℎ1,ℎ2, ℎ3,ℎ4) + 𝑐𝑐2θ
2

(𝑎𝑎1, 𝑎𝑎2,𝑎𝑎3,𝑎𝑎4)] 

                      + (𝑐𝑐3+δ𝑐𝑐4)(𝑇𝑇−𝑡𝑡1)2

2
(𝑏𝑏1, 𝑏𝑏2,  𝑏𝑏3, 𝑏𝑏4)  

                      +(𝑘𝑘11,𝑘𝑘12,𝑘𝑘13,𝑘𝑘14)𝑡𝑡1 +  (𝑘𝑘21,𝑘𝑘22, 𝑘𝑘23,𝑘𝑘24)}    

                 = 1
𝑇𝑇
{𝑡𝑡13(𝑎𝑎1ℎ1

6θ
+ 𝑐𝑐2θ

2
𝑎𝑎1, 𝑎𝑎2ℎ2

6θ
+ 𝑐𝑐2θ

2
𝑎𝑎2, 𝑎𝑎3ℎ3

6θ
+ 𝑐𝑐2θ

2
𝑎𝑎3, 𝑎𝑎4ℎ4

6θ
+ 𝑐𝑐2θ

2
𝑎𝑎4) + 

(𝑐𝑐3+δ𝑐𝑐4)(𝑇𝑇−𝑡𝑡1)2

2
(𝑏𝑏1, 𝑏𝑏2,  𝑏𝑏3, 𝑏𝑏4)  

                       + (𝑘𝑘11𝑡𝑡1 + 𝑘𝑘21, 𝑘𝑘12𝑡𝑡1 + 𝑘𝑘22, 𝑘𝑘13𝑡𝑡1 + 𝑘𝑘23, 𝑘𝑘14𝑡𝑡1 + 𝑘𝑘24) 

       = (𝑊𝑊, 𝑋𝑋, 𝑌𝑌, 𝑍𝑍), (say),                                                                                                                         (9) 

    where     

 𝑊𝑊 = 1
𝑇𝑇
 {𝑎𝑎1𝑡𝑡13(ℎ1

6θ
+ 𝑐𝑐2θ

2
) + 𝑏𝑏1(𝑐𝑐3+δ𝑐𝑐4)(𝑇𝑇−𝑡𝑡1)2

2
 + 𝑘𝑘11𝑡𝑡1 + 𝑘𝑘21} 

 𝑋𝑋 = 1
𝑇𝑇
 {𝑎𝑎2𝑡𝑡13(ℎ2

6θ
+ 𝑐𝑐2θ

2
) + 𝑏𝑏2(𝑐𝑐3+δ𝑐𝑐4)(𝑇𝑇−𝑡𝑡1)2

2
 + 𝑘𝑘12𝑡𝑡1 + 𝑘𝑘22} 

 𝑌𝑌 = 1
𝑇𝑇
 {𝑎𝑎3𝑡𝑡13(ℎ3

6θ
+ 𝑐𝑐2θ

2
) + 𝑏𝑏3(𝑐𝑐3+δ𝑐𝑐4)(𝑇𝑇−𝑡𝑡1)2

2
 + 𝑘𝑘13𝑡𝑡1 + 𝑘𝑘23} 

 𝑍𝑍 = 1
𝑇𝑇
 {𝑎𝑎4𝑡𝑡13(ℎ4

6θ
+ 𝑐𝑐2θ

2
) + 𝑏𝑏4(𝑐𝑐3+δ𝑐𝑐4)(𝑇𝑇−𝑡𝑡1)2

2
 + 𝑘𝑘14𝑡𝑡1 + 𝑘𝑘24}                                                                                    

 The  α − cuts, 𝐶𝐶𝐿𝐿(α) and 𝐶𝐶𝑅𝑅(α), of trapezoidal fuzzy number 𝐶̃𝐶(𝑡𝑡1,𝑇𝑇), can be written 

as follows: 

𝐶𝐶𝐿𝐿(α) = 𝑊𝑊 + (𝑋𝑋 −𝑊𝑊)𝛼𝛼   

= 1
𝑇𝑇
�𝑎𝑎1𝑡𝑡13 �

ℎ1
6θ

+ 𝑐𝑐2θ
2
�+ 𝑏𝑏1(𝑐𝑐3+δ𝑐𝑐4)(𝑇𝑇−𝑡𝑡1)2

2
 + 𝑘𝑘11𝑡𝑡1 + 𝑘𝑘21� + 𝛼𝛼

𝑇𝑇
�𝑡𝑡1

3

6θ
(𝑎𝑎2ℎ2 − 𝑎𝑎1ℎ1) + 𝑐𝑐2𝜃𝜃𝜃𝜃13

2
(𝑎𝑎2 −

𝑎𝑎1) + (𝑐𝑐3+δ𝑐𝑐4)(𝑇𝑇−𝑡𝑡1)2(𝑏𝑏2−𝑏𝑏1)
2

 + 𝑡𝑡1(𝑘𝑘12 − 𝑘𝑘11) + 𝑘𝑘22 − 𝑘𝑘21� 

 And    𝐶𝐶𝑅𝑅(α) =  𝑍𝑍 −  (𝑍𝑍 − 𝑌𝑌)𝛼𝛼  

 =1
𝑇𝑇
�𝑎𝑎4𝑡𝑡13 �

ℎ4
6θ

+ 𝑐𝑐2θ
2
�+ 𝑏𝑏4(𝑐𝑐3+δ𝑐𝑐4)(𝑇𝑇−𝑡𝑡1)2

2
 + 𝑘𝑘14𝑡𝑡1 + 𝑘𝑘24�+ 𝛼𝛼

𝑇𝑇
�𝑡𝑡1

3

6θ
(𝑎𝑎4ℎ4 − 𝑎𝑎3ℎ3) + 𝑐𝑐2𝜃𝜃𝜃𝜃13

2
(𝑎𝑎4 −

𝑎𝑎3) + (𝑐𝑐3+δ𝑐𝑐4)(𝑇𝑇−𝑡𝑡1)2(𝑏𝑏4−𝑏𝑏3)
2

 + 𝑡𝑡1(𝑘𝑘14 − 𝑘𝑘13) +  𝑘𝑘24 − 𝑘𝑘23� 
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⇒∫ [𝐶𝐶𝐿𝐿(α)𝑑𝑑𝑑𝑑1
0 =1

𝑇𝑇
�𝑎𝑎1𝑡𝑡13 �

ℎ1
6θ

+ 𝑐𝑐2θ
2
�+ 𝑏𝑏1(𝑐𝑐3+δ𝑐𝑐4)(𝑇𝑇−𝑡𝑡1)2

2
 + 𝑘𝑘11𝑡𝑡1 + 𝑘𝑘21� + 1

2𝑇𝑇
�𝑡𝑡1

3

6θ
(𝑎𝑎2ℎ2 −

𝑎𝑎1ℎ1) + 𝑐𝑐2𝜃𝜃𝜃𝜃13

2
(𝑎𝑎2 − 𝑎𝑎1) + (𝑐𝑐3+δ𝑐𝑐4)(𝑇𝑇−𝑡𝑡1)2(𝑏𝑏2−𝑏𝑏1)

2
 + 𝑡𝑡1(𝑘𝑘12 − 𝑘𝑘11) +  𝑘𝑘22 − 𝑘𝑘21�   (10) 

And ∫ 𝐶𝐶𝑅𝑅(α)𝑑𝑑𝑑𝑑 =1
0  1

𝑇𝑇
�𝑎𝑎4𝑡𝑡13 �

ℎ4
6θ

+ 𝑐𝑐2θ
2
�+ 𝑏𝑏4(𝑐𝑐3+δ𝑐𝑐4)(𝑇𝑇−𝑡𝑡1)2

2
 +  𝑘𝑘14𝑡𝑡1 + 𝑘𝑘24� + 1

2𝑇𝑇
�𝑡𝑡1

3

6θ
(𝑎𝑎4ℎ4 −

𝑎𝑎3ℎ3) + 𝑐𝑐2𝜃𝜃𝜃𝜃13

2
(𝑎𝑎4 − 𝑎𝑎3) + (𝑐𝑐3+δ𝑐𝑐4)(𝑇𝑇−𝑡𝑡1)2(𝑏𝑏4−𝑏𝑏3)

2
 + 𝑡𝑡1(𝑘𝑘14 − 𝑘𝑘13) +  𝑘𝑘24 − 𝑘𝑘23�   (11) 

 By applying the Signed Distance Method, the defuzzified value of average total cost, 

which is represented by the fuzzy number 𝐶̃𝐶(𝑡𝑡1,𝑇𝑇), can be written as follows:  

 𝐶𝐶𝑑𝑑𝑑𝑑(𝑡𝑡1, T) = 1
2 ∫ [𝐶𝐶𝐿𝐿(α) + 𝐶𝐶𝑅𝑅(α)]𝑑𝑑𝑑𝑑1

0 ,  

= 

1
2

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1
𝑇𝑇
�𝑎𝑎1𝑡𝑡13 �

ℎ1
6θ

+ 𝑐𝑐2θ
2
�+ 𝑏𝑏1(𝑐𝑐3+δ𝑐𝑐4)(𝑇𝑇−𝑡𝑡1)2

2
 + 𝑘𝑘11𝑡𝑡1 + 𝑘𝑘21�

+ 1
2𝑇𝑇
�𝑡𝑡1

3

6θ
(𝑎𝑎2ℎ2 − 𝑎𝑎1ℎ1) + 𝑐𝑐2𝜃𝜃𝜃𝜃13

2
(𝑎𝑎2 − 𝑎𝑎1) + (𝑐𝑐3+δ𝑐𝑐4)(𝑇𝑇−𝑡𝑡1)2(𝑏𝑏2−𝑏𝑏1)

2
 + 𝑡𝑡1(𝑘𝑘12 − 𝑘𝑘11) + 𝑘𝑘22 − 𝑘𝑘21�

+ 1
𝑇𝑇
�𝑎𝑎4𝑡𝑡13 �

ℎ4
6θ

+ 𝑐𝑐2θ
2
�+ 𝑏𝑏4(𝑐𝑐3+δ𝑐𝑐4)(𝑇𝑇−𝑡𝑡1)2

2
 +  𝑘𝑘14𝑡𝑡1 + 𝑘𝑘24�

+ 1
2𝑇𝑇
�𝑡𝑡1

3

6θ
(𝑎𝑎4ℎ4 − 𝑎𝑎3ℎ3) + 𝑐𝑐2𝜃𝜃𝜃𝜃13

2
(𝑎𝑎4 − 𝑎𝑎3) + (𝑐𝑐3+δ𝑐𝑐4)(𝑇𝑇−𝑡𝑡1)2(𝑏𝑏4−𝑏𝑏3)

2
 + 𝑡𝑡1(𝑘𝑘14 − 𝑘𝑘13) + 𝑘𝑘24 − 𝑘𝑘23�⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

= 

1
2

⎣
⎢
⎢
⎢
⎡
1
𝑇𝑇
�𝑎𝑎1𝑡𝑡13 �

ℎ1
6θ

+ 𝑐𝑐2θ
2
�+ 𝑏𝑏1(𝑐𝑐3+δ𝑐𝑐4)(𝑇𝑇−𝑡𝑡1)2

2
+ 𝑘𝑘11𝑡𝑡1 + 𝑘𝑘21 + 𝑎𝑎4𝑡𝑡13 �

ℎ4
6θ

+ 𝑐𝑐2θ
2
�+ 𝑏𝑏4(𝑐𝑐3+δ𝑐𝑐4)(𝑇𝑇−𝑡𝑡1)2

2
 + 𝑘𝑘14𝑡𝑡1 + 𝑘𝑘24�

+ 1
2𝑇𝑇
�𝑡𝑡1

3

6θ
(𝑎𝑎2ℎ2 − 𝑎𝑎1ℎ1) + 𝑐𝑐2𝜃𝜃𝜃𝜃13

2
(𝑎𝑎2 − 𝑎𝑎1) + (𝑐𝑐3+δ𝑐𝑐4)(𝑇𝑇−𝑡𝑡1)2(𝑏𝑏2−𝑏𝑏1)

2
 +  𝑡𝑡1(𝑘𝑘12 − 𝑘𝑘11) + 𝑘𝑘22 − 𝑘𝑘21�

+ 1
2𝑇𝑇
�𝑡𝑡1

3

6θ
(𝑎𝑎4ℎ4 − 𝑎𝑎3ℎ3) + 𝑐𝑐2𝜃𝜃𝜃𝜃13

2
(𝑎𝑎4 − 𝑎𝑎3) + (𝑐𝑐3+δ𝑐𝑐4)(𝑇𝑇−𝑡𝑡1)2(𝑏𝑏4−𝑏𝑏3)

2
 + 𝑡𝑡1(𝑘𝑘14 − 𝑘𝑘13) + 𝑘𝑘24 − 𝑘𝑘23� ⎦

⎥
⎥
⎥
⎤

     

 (12) 

 Hence, the optimization problem can be written as: 

Minimize    𝐶𝐶𝑑𝑑𝑑𝑑(𝑡𝑡1, T)
Subject to      𝑡𝑡1 < 𝑇𝑇
and    𝑡𝑡1 ≥ 0,   𝑇𝑇 ≥ 0

�  (13) 

5. SOLUTION PROCEDURE 

 In this section, the solution procedure for the fuzzy model is presented. Since the 

objective is to minimize the total cost 𝐶𝐶𝑑𝑑𝑑𝑑(𝑡𝑡1, T) with respect to the decision variables 𝑡𝑡1 and 

T; the necessary conditions for minimizing the total cost are: 

𝜕𝜕𝐶𝐶𝑑𝑑𝑆𝑆(𝑡𝑡1,T)
𝜕𝜕𝑡𝑡1

 = 0, and   𝜕𝜕𝐶𝐶𝑑𝑑𝑑𝑑(𝑡𝑡1,T)
𝜕𝜕𝜕𝜕

 = 0 (14) 



 
 

 
[https://creativecommons.org/licenses/by-nc-sa/4.0/] 
Licensed under a Creative Commons Attribution 4.0 

 

568 

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) 
http://www.ijmp.jor.br v. 12, n. 2, March-April 2021 

ISSN: 2236-269X 
DOI: 10.14807/ijmp.v12i2.1212 

 The sufficient conditions for maximizing the cost function 𝐶𝐶𝑑𝑑𝑑𝑑(𝑡𝑡1, T) are: 

[ 𝜕𝜕
2𝐶𝐶𝑑𝑑𝑑𝑑(𝑡𝑡1,𝑇𝑇)
𝜕𝜕2𝑡𝑡1

](𝑡𝑡1∗ ,   𝑇𝑇∗) > 0,  [ 𝜕𝜕
2𝐶𝐶𝑑𝑑𝑑𝑑(𝑡𝑡1,𝑇𝑇)
𝜕𝜕2𝑇𝑇

](𝑡𝑡1∗ ,   𝑇𝑇∗) > 0, and  [� 𝜕𝜕
2𝐶𝐶𝑑𝑑𝑑𝑑(𝑡𝑡1,𝑇𝑇)
𝜕𝜕2𝑡𝑡1

� � 𝜕𝜕
2𝐶𝐶𝑑𝑑𝑑𝑑(𝑡𝑡1,𝑇𝑇)
𝜕𝜕2𝑇𝑇

� −

[[𝜕𝜕
2𝐶𝐶𝑑𝑑𝑑𝑑(𝑡𝑡1,𝑇𝑇)
𝜕𝜕𝑡𝑡1𝜕𝜕𝜕𝜕

]2](𝑡𝑡1∗ ,   𝑇𝑇∗) > 0  (15)  

 The satisfaction of these conditions confirms the convexity of the cost function 

𝐶𝐶𝑑𝑑𝑑𝑑(𝑡𝑡1,𝑇𝑇). 

6. SOLVED EXAMPLE 

 Consider an inventory situation with crisp parameters having the following values: 

 R(t) = �120𝑡𝑡, when  I(t) > 0  
100, when  I(t) ≤ 0, , 

 where 𝑎𝑎 = 120, 𝑎𝑎𝑎𝑎𝑎𝑎  𝑏𝑏 = 100,  Ordering cost parameter 𝑘𝑘1= 4, and 𝑘𝑘2= 80, c1(t) 

= ℎ𝑡𝑡 = 0.33𝑡𝑡,  θ = 0.07,  δ = 0.5,  𝑐𝑐2 = 2.5, c3= 10, 𝑐𝑐4 = 5.  

6.1. Crisp Model. The optimal solutions are as follows: 

𝑡𝑡1∗ = 1.5228 ,    𝑇𝑇∗ = 1.5871 ,     𝐶𝐶∗𝑑𝑑𝑑𝑑(𝑡𝑡1, T) = 80.2626.  

6.2. Fuzzy Model. We set some trapezoidal fuzzy numbers as follows:  

 

𝑎𝑎� = (100, 110, 130, 140)
𝑏𝑏� = (80, 90, 110, 120)

ℎ� = (0.15, 0.25, 0.50, 0.60)
 𝑘𝑘�1 = (2, 3, 5, 6)

𝑘𝑘�2 = (60, 70, 90, 100) ⎦
⎥
⎥
⎥
⎥
⎥

 (16) 

 For each of these input parameters, the variations in the values are arranged arbitrary 

and their defuzzified values are computed by applying the signed distance method. Applying 

the proposed solution procedure on package- MATHEMATICA-8.0, the optimal solutions are 

as follows: 

𝑡𝑡1∗ = 1.132 ,   𝑇𝑇∗ = 1.550 ,    𝐶𝐶∗𝑑𝑑𝑑𝑑(𝑡𝑡1, T) = 102.0 ,  

6.3. Convexity. 

 The convexity of the cost function 𝐶𝐶∗𝑑𝑑𝑑𝑑 is shown graphically in Figure 1 and Figure 2.  
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Figure 1: Convexity in Crisp Model Figure 2: Convexity in Fuzzy Model 

 The obtained results are summarized in Table-1.  The comparison for both models 

between the Time parameters is illustrated in Figure 3, while the comparison between the cost 

function values is illustrated in Figure 4.                                 

Table 1: Optimal Results 
 𝑡𝑡1∗ 𝑇𝑇∗ 𝐶𝐶∗𝑑𝑑𝑑𝑑(𝑡𝑡1, T) 

Crisp Model 1.5228 1.5871 80.2626 
Fuzzy Model 1.132 1.550 102.0 

 

  
Figure 3: Comparison of Time parameter Figure 4: Comparison of Cost parameter 

7. SPECIAL CASES  

 In this section, we consider the following two special cases: 

(i) For δ = 0, the proposed model changes from partially backlogged to fully 

backlogged. In fully backlogged inventory model, the total cost function is given by  
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 C(𝑡𝑡1, T) =  1
𝑇𝑇

 {𝑡𝑡13 � 𝑎𝑎ℎ
6θ

 + 𝑐𝑐2𝑎𝑎θ
2

 �+ 𝑏𝑏
2
𝑐𝑐3(𝑇𝑇 − 𝑡𝑡1)2 + 𝑘𝑘1𝑡𝑡1 + 𝑘𝑘2}  (17) 

(ii) For k1= 0, the proposed model changes from linearly increasing type ordering 

cost to constant type ordering cost model. Subsequently, in constant ordering cost 

inventory model, the total cost function is given by                                                

 C(𝑡𝑡1, T) = 1
𝑇𝑇

{𝑡𝑡13( 𝑎𝑎ℎ
6θ

 + 𝑐𝑐2𝑎𝑎θ
2

 ) +  𝑏𝑏
2

(𝑐𝑐3 + δ𝑐𝑐4)(𝑇𝑇 − 𝑡𝑡1)2  + 𝑘𝑘2}  (18) 

8. MANAGERIAL IMPLICATIONS AND LIMITATIONS 

8.1. Managerial Implications 

 The following managerial implications are explored from the proposed research work: 

which is supportive of any operational managers in the manufacturing unit: 

• The model developed in this research work is supportive for the inventory management, 

where the holding cost and ordering cost are is continuously increasing with time, and 

where the decision maker targets to optimize the average total inventory costs. 

• The model considered the demand rate, ordering cost, and holding cost of the items 

with some ambiguity which is a natural case, and therefore, provides an approach to the 

inventory managers to optimize the various inventory costs with ambiguity. 

8.2. Limitations 

 There exist some limitations of the proposed model which are listed below: 

• In the derivation of the proposed model, we used the approximations of exponential 

term. Therefore, this model will provide the approximate results only.  

• The examples, which we used to validate the proposed model, are hypothetical. 

• The proposed problem is limited to vagueness only. However, in real-world 

applications, the DM has to encounter the randomness and multiple choice cases. 

• The role of deterioration is assumed constant. However, in real-world applications, the 

DM has to face the time dependent deterioration. 

9. CONCLUSIONS AND FUTURE DIRECTIONS 

 In this paper, a deteriorating inventory model with time-dependant demand rate and 

varying holding cost is presented. The shortages are permitted and partially backlogging case 

is assumed. The classical optimization technique is implemented over the cost function to 
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obtain the optimal order quantity and optimal total cost. For the practical application of this 

model, a solved example is considered by using the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 8.0 package. The 

proposed model can assist the manufacturer and retailer in accurately determining the 

economic order quantity, cycle time and total cost, to be used in inventory control of seasonal 

items.  

 There are several directions for future research. We can discuss the sensitivity test to 

identify the most sensitive parameters in the model. Another direction of research is to consider 

the randomness in inventory parameter. Also, the demand and holding cost may be considered 

as quadratic time dependent.   
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Appendix-A 

The maximum amount of demand backlogged per cycle is as follows: 
𝐷𝐷𝐵𝐵 = − 𝐼𝐼2(𝑇𝑇) = 𝑏𝑏

δ
 [log{1+ δ(T− 𝑡𝑡1)}]  (A1) 

So, the order quantity per cycle is given by 
Q = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐷𝐷𝐵𝐵 =  𝑎𝑎

θ
[ 1
θ

 + (𝑡𝑡1 −
1
θ
)𝑒𝑒θ 𝑡𝑡1] + 𝑏𝑏

δ
 [log{1+ δ(T− 𝑡𝑡1)}]                                            

=  𝑎𝑎
θ

[ 1
θ

 + (𝑡𝑡1 −
1
θ
)(1 + θ 𝑡𝑡1 + θ2𝑡𝑡12

2
)] + 𝑏𝑏

δ
 [δ(T− 𝑡𝑡1) − δ

2(T− 𝑡𝑡1)2

2
], using Maclaurin series,           

=  𝑎𝑎
θ

[ 1
θ

 + �𝑡𝑡1 + θ𝑡𝑡12 −
1
θ
− 𝑡𝑡1 −

θ𝑡𝑡12

2
�] + b[T− 𝑡𝑡1 − δ(T− 𝑡𝑡1)2

2
], taking terms upto power two, as 

θ<1.            
Q = 𝑎𝑎 �𝑡𝑡1

2

2
� + b[T− 𝑡𝑡1 − δ(T− 𝑡𝑡1)2

2
] (A2) 

The inventory holding cost per cycle is 
𝐶𝐶𝐻𝐻 = ∫ 𝑐𝑐1(𝑡𝑡) 𝑡𝑡1

0 𝐼𝐼1(𝑡𝑡)dt 
=  ∫ − 𝑎𝑎ℎ𝑡𝑡

θ
 [(t − 1

θ
) − (𝑡𝑡1 −

1
θ
)𝑒𝑒θ (𝑡𝑡1−𝑡𝑡)]   𝑡𝑡1

0 dt 

= −𝑎𝑎ℎ
θ ∫ [t2 − 𝑡𝑡

θ
− (𝑡𝑡1 −

1
θ
)eθt1𝑡𝑡𝑒𝑒−θ𝑡𝑡]   𝑡𝑡1

0 dt 

= −𝑎𝑎ℎ
θ

 [𝑡𝑡1
3

3
 − 𝑡𝑡1

2

2θ
 + (𝑡𝑡1 −

1
θ
)(𝑡𝑡1

θ
 + 1

θ2
− 𝑒𝑒θ𝑡𝑡1

θ2
)] 

Expanding 𝑒𝑒θ𝑡𝑡1 into ascending powers of θ 𝑡𝑡1, taking the terms up to 2nd power in θ, 
and  neglecting all terms, as θ<1. After simplification we have 

𝐶𝐶𝐻𝐻 = 𝑎𝑎ℎ
6θ

 𝑡𝑡13   (A3) 
The deterioration cost per cycle is 
𝐶𝐶𝐷𝐷 =  𝑐𝑐2[𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 −  ∫ 𝑅𝑅(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡1

0  ] 
=  𝑐𝑐2[𝑎𝑎
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The total ordering cost per order for the cycle [0, T] is given by 
𝐶𝐶𝑜𝑜(𝑡𝑡) = 𝑘𝑘1𝑡𝑡1 + 𝑘𝑘2    for  0 ≤ 𝑡𝑡1 ≤ 𝑇𝑇                                  
The shortage cost per cycle is 
𝐶𝐶𝑆𝑆 = 𝑐𝑐3[−∫ 𝐼𝐼2

𝑇𝑇
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The lost sale cost per cycle is 
𝐶𝐶𝐿𝐿 = 𝑐𝑐4 ∫ [1 −  1

1+ δ(T−t)
]𝑇𝑇

𝑡𝑡1
b dt = 𝑐𝑐4b[(T−𝑡𝑡1) −1

δ
𝑙𝑙𝑙𝑙𝑙𝑙{1 + δ(T −  𝑡𝑡1)] (A6) 
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